Are hyperbranched polymers capable of forming entanglements? This is the central issue of this contribution. Hyperbranched polyglycerol (hbPG) samples with different molecular weights (600-106 000 g · mol(-1) ), narrow polydispersities (1.2-1.
View Article and Find Full Text PDFMacromol Rapid Commun
October 2010
The synthesis of hyperbranched poly(ethylene glycol) (hbPEG) in one step was realized by random copolymerization of ethylene oxide and glycidol, leading to a biocompatible, amorphous material with multiple hydroxyl functionalities. A series of copolymers with moderate polydispersity ($\overline {M} _{{\rm w}} /\overline {M} _{{\rm n}} $ < 1.8) was obtained with varying glycidol content (3-40 mol-%) and molecular weights up to 49 800 g mol(-1) .
View Article and Find Full Text PDFDendritic macromolecules with random branch-on-branch topology, termed hyperbranched polymers in the late 1980s, have a decided advantage over symmetrical dendrimers by virtue of typically being accessible in a one-step synthesis. Saving this synthetic effort once had an unfortunate consequence, though: hyperbranching polymerization used to result in a broad distribution of molecular weights (that is, very high polydispersities, often M(w)/M(n) > 5). By contrast, a typical dendrimer synthesis yields a single molecule (in other words, M(w)/M(n) = 1.
View Article and Find Full Text PDF