Publications by authors named "Daniel Widzowski"

Although the muscarinic receptor family has long been a source of potentially compelling targets for small molecule drug discovery, it was difficult to achieve agonist selectivity within the family. A new class of M1 muscarinic agonists has emerged, and these compounds have been characterized as agonists that activate the receptor at an allosteric site. Members of this class of M1 agonists have been shown to be selective across the muscarinic receptors.

View Article and Find Full Text PDF

Many neuropsychiatric drugs interact with more than one molecular target, and therapeutic indices might be improved by prospectively designing compounds with profiles optimized against a combination of targets. The dibenzo-epine scaffold is considered a privileged structure, and this scaffold has been explored rigorously in the search for potential novel neuropharmacologic treatments. Members of this chemical class are known to interact with many receptors and transporters, particularly those of the biogenic amine class.

View Article and Find Full Text PDF

Dopamine (D(2)) partial agonists (D2PAs) have been regarded as a potential treatment for schizophrenia patients with expected better side effect profiles than currently marketed antipsychotics. Herein we report the synthesis and SAR of a series of aminothiazole fused benzazepines as selective D(2) partial agonists. These compounds have good selectivity, CNS drug-like properties and tunable D(2) partial agonism.

View Article and Find Full Text PDF

The preclinical pharmacology and pharmacokinetic properties of (2R)-6-methoxy-8-(4-methylpiperazin-1-yl)-N-(4-morpholin-4-ylphenyl)chromane-2-carboxamide (AZD3783), a potent 5-hydroxytryptamine 1B (5-HT(1B)) receptor antagonist, were characterized as part of translational pharmacokinetic/pharmacodynamic hypothesis testing in human clinical trials. The affinity of AZD3783 to the 5-HT(1B) receptor was measured in vitro by using membrane preparations containing recombinant human or guinea pig 5-HT(1B) receptors and in native guinea pig brain tissue. In vivo antagonist potency of AZD3783 for the 5HT(1B) receptor was investigated by measuring the blockade of 5-HT(1B) agonist-induced guinea pig hypothermia.

View Article and Find Full Text PDF