Publications by authors named "Daniel Widmann"

Au/Mg(OH) catalysts have been reported to be far more active in the catalytic low-temperature CO oxidation (below 0 °C) than the thoroughly investigated Au/TiO catalysts. Based on kinetic and in situ infrared spectroscopy (DRIFTS) measurements, we demonstrate that the comparatively weak interaction of Au/Mg(OH) with CO formed during the low-temperature reaction is the main reason for the superior catalyst performance. This feature enables rapid product desorption and hence continuous CO oxidation at temperatures well below 0 °C.

View Article and Find Full Text PDF

Methanol synthesis for chemical energy storage, via hydrogenation of CO2 with H2 produced by renewable energies, is usually accompanied by the undesired formation of CO via the reverse water-gas shift reaction. Aiming at a better mechanistic understanding of methanol formation from CO2/H2 on highly selective supported Au/ZnO catalysts we have investigated the role of CO in the reaction process using isotope labelling experiments. Using (13)C-labelled CO2, we found for reaction at 5 bar and 240 °C that (i) the methanol formation rate is significantly higher in CO2-containing gas mixtures than in a CO2-free mixture and (ii) in mixtures containing both CO2 and CO methanol formation from CO increases with the CO content up to 1% CO, and then remains at 20% of the total methanol formation up to a CO2/CO ratio of 1/1, making CO2 the preferred carbon source in these mixtures.

View Article and Find Full Text PDF

To better understand the role of water in the selective methanation of CO in CO2-rich reformate gases on Ru/Al2O3 catalysts, the influence of exposing these catalysts to H2O-rich reformate gases on their reaction characteristics in transient experiments was investigated by employing kinetic and in situ spectroscopic measurements as well as ex situ catalyst characterization. Transient exposure of the ruthenium catalyst to wet reaction gas (5 or 15% H2O) results in significantly enhanced activity and selectivity for CO methanation in subsequent reactions in dry reformate compared with activation and reaction in dry reformate directly. Operando X-ray absorption spectroscopy results reveal that this is in accordance with a significant decrease in ruthenium particle size, which is stable during subsequent reaction in dry reformate.

View Article and Find Full Text PDF

Multi-quantum well light-emitting diodes, consisting of ten alternating GeSn/Ge-layers, were grown by molecular beam epitaxy on Si. The Ge barriers were 10 nm thick, and the GeSn wells were grown with 7% Sn and thicknesses between 6 and 12 nm. The electroluminescence spectra measured at 300 and 80 K yield a broad and intensive luminescence band.

View Article and Find Full Text PDF

Room temperature lasing from electrically pumped n-type doped Ge edge emitting devices has been observed. The edge emitter is formed by cleaving Si-Ge waveguide heterodiodes, providing optical feedback through a Fabry-Perot resonator. The electroluminescence spectra of the devices showed optical bleaching and intensity gain for wavelengths between 1660 nm and 1700 nm.

View Article and Find Full Text PDF

The potential of metal oxide supported Au catalysts for the formation of methanol from CO2 and H2 under conditions favorable for decentralized and local conversion, which could be concepts for chemical energy storage, was investigated. Significant differences in the catalytic activity and selectivity of Au/Al2 O3 , Au/TiO2 , AuZnO, and Au/ZrO2 catalysts for methanol formation under moderate reaction conditions at a pressure of 5 bar and temperatures between 220 and 240 °C demonstrate pronounced support effects. A high selectivity (>50 %) for methanol formation was obtained only for Au/ZnO.

View Article and Find Full Text PDF

The catalytic properties of nanostructured Au and their physical origin were investigated by using the low-temperature CO oxidation as a test reaction. In order to distinguish between structural effects (structure-activity correlations) and bimetallic/bifunctional effects, unsupported nanoporous gold (NPG) samples prepared from different Au alloys (AuAg, AuCu) by selective leaching of a less noble metal (Ag, Cu) were employed, whose structure (surface area, ligament size) as well as their residual amount of the second metal were systematically varied by applying different potentials for dealloying. The structural and chemical properties before and after 1000 min reaction were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

In this paper we investigate the influence of n-type doping in Ge light emitting diodes on Si substrates on the room temperature emission spectrum. The layer structures are grown with a special low temperature molecular beam epitaxy process resulting in a slight tensile strain of 0.13%.

View Article and Find Full Text PDF