Publications by authors named "Daniel Wesierski"

Background: Sperm tail morphology and motility have been demonstrated to be important factors in determining sperm quality for in vitro fertilization. However, many existing computer-aided sperm analysis systems leave the sperm tail out of the analysis, as detecting a few tail pixels is challenging. Moreover, some publicly available datasets for classifying morphological defects contain images limited only to the sperm head.

View Article and Find Full Text PDF

. Quantitative evaluation protocols are critical for the development of algorithms that remove artifacts from real electroencephalography (EEG) optimally. However, visually inspecting the real EEG to select the top-performing artifact removal pipeline is infeasible while hand-crafted EEG data allow assessing artifact removal configurations only in a simulated environment.

View Article and Find Full Text PDF

Denoising videos in real-time is critical in many applications, including robotics and medicine, where varying-light conditions, miniaturized sensors, and optics can substantially compromise image quality. This work proposes the first video denoising method based on a deep neural network that achieves state-of-the-art performance on dynamic scenes while running in real-time on VGA video resolution with no frame latency. The backbone of our method is a novel, remarkably simple, temporal network of cascaded blocks with forward block output propagation.

View Article and Find Full Text PDF

Localizing instrument parts in video-assisted surgeries is an attractive and open computer vision problem. A working algorithm would immediately find applications in computer-aided interventions in the operating theater. Knowing the location of tool parts could help virtually augment visual faculty of surgeons, assess skills of novice surgeons, and increase autonomy of surgical robots.

View Article and Find Full Text PDF