Publications by authors named "Daniel Weingarten"

Photon upconversion is a fundamental interaction of light and matter that has applications in fields ranging from bioimaging to microfabrication. However, all photon upconversion methods demonstrated thus far involve challenging aspects, including requirements of high excitation intensities, degradation in ambient air, requirements of exotic materials or phases, or involvement of inherent energy loss processes. Here we experimentally demonstrate a mechanism of photon upconversion in a thin film, binary mixture of organic chromophores that provides a pathway to overcoming the aforementioned disadvantages.

View Article and Find Full Text PDF

A combination of molecular quantum electrodynamics, perturbation theory, and ab initio calculations was used to create a computational methodology capable of estimating the rate of three-body singlet upconversion in organic molecular assemblies. The approach was applied to quantify the conditions under which such relaxation rates, known as energy pooling, become meaningful for two test systems, stilbene-fluorescein and hexabenzocoronene-oligothiophene. Both exhibit low intramolecular conversion, but intermolecular configurations exist in which pooling efficiency is at least 90% when placed in competition with more conventional relaxation pathways.

View Article and Find Full Text PDF