The objective was to evaluate performance, strengths, and limitations of the microfluidic resistive pulse sensing (MRPS) technique for the characterization of particles in the size range from about 50 to 2000 nm. MRPS, resonant mass measurement (RMM), nanoparticle tracking analysis (NTA) and dynamic light scattering were compared for the analysis of nanometer-sized polystyrene (PS) beads, liposomes, bacteria, and protein aggregates. An electrical conductivity of at least 3 mS/cm (equivalent to 25 mM NaCl) was determined as a key requirement for reliable analysis with MRPS.
View Article and Find Full Text PDFPurpose: To investigate the effect of nanoparticulate impurities (NPIs) isolated from pharmaceutical-grade sucrose, on the stability of monoclonal antibodies (mAbs).
Methods: NPIs were purified from pharmaceutical-grade sucrose and spiked into trastuzumab, rituximab, infliximab, and cetuximab formulations. The stability of the mAbs as a function of storage time, temperature, and NPI concentration was assessed by visual inspection, flow-imaging microscopy, nanoparticle tracking analysis, size-exclusion chromatography, capillary isoelectric focusing, and intrinsic differential scanning fluorimetry.
Purpose: In the present study we investigated the root-cause of an interference signal (100-200 nm) of sugar-containing solutions in dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) and its consequences for the analysis of particles in biopharmaceutical drug products.
Methods: Different sugars as well as sucrose of various purity grades, suppliers and lots were analyzed by DLS and NTA before and (only for sucrose) after treatment by ultrafiltration and diafiltration. Furthermore, Fourier transform infrared (FTIR) microscopy, scanning electron microscopy coupled energy-dispersive X-ray spectroscopy (SEM-EDX), and fluorescence spectroscopy were employed.
Light obscuration (LO) is the current standard technique for subvisible particle analysis in the quality control of parenterally administered drugs, including therapeutic proteins. Some of those, however, exhibit high viscosities due to high protein concentrations, which can lead to false results by LO measurements. In this study, we show that elevated sample viscosities, from about 9 cP, lead to an underestimation of subvisible particle concentrations, which is easily overlooked when considering reported data alone.
View Article and Find Full Text PDFFlow imaging microscopy was introduced as a technique for protein particle analysis a few years ago and has strongly gained in importance ever since. The aim of the present study was a comparative evaluation of four of the most relevant flow imaging microscopy systems for biopharmaceuticals on the market: Micro-Flow Imaging (MFI)4100, MFI5200, Flow Cytometer And Microscope (FlowCAM) VS1, and FlowCAM PV. Polystyrene standards, particles generated from therapeutic monoclonal antibodies, and silicone oil droplets were analyzed by all systems.
View Article and Find Full Text PDFAll therapeutic proteins are potentially immunogenic. Antibodies formed against these drugs can decrease efficacy, leading to drastically increased therapeutic costs and in rare cases to serious and sometimes life threatening side-effects. Many efforts are therefore undertaken to develop therapeutic proteins with minimal immunogenicity.
View Article and Find Full Text PDFOur study aimed to comparatively evaluate Micro-Flow Imaging (MFI) and the recently introduced technique of resonant mass measurement (Archimedes, RMM) as orthogonal methods for the quantitative differentiation of silicone oil droplets and protein particles. This distinction in the submicron and micron size range is highly relevant for the development of biopharmaceuticals, in particular for products in prefilled syringes. Samples of artificially generated silicone oil droplets and protein particles were quantified individually and in defined mixtures to assess the performance of the two techniques.
View Article and Find Full Text PDFMetal catalyzed oxidation via the oxidative system Cu(2+)/ascorbate is known to induce aggregation of therapeutic proteins, resulting in enhanced immunogenicity. Hence, inclusion of antioxidants in protein formulations is of great interest. In this study, using recombinant human insulin (insulin) as a model, we investigated the ability of several excipients, in particular triethylenetetramine (TETA), reduced glutathione(GSH) and ethylenediamine tetraacetic acid (EDTA), for their ability to prevent protein oxidation, aggregation, and fragmentation.
View Article and Find Full Text PDF