Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing " like" physiology from immature cardiomyocytes. We hypothesized that the degree of cardiomyocyte alignment and prestress within engineered tissues is regulated by tissue geometry and, subsequently, drives electrophysiological development.
View Article and Find Full Text PDFTissue-engineered models are an essential tool in biomedical research. Tissue geometry is a key determinant of function, but controlling the geometry of microscale tissues remains challenging. Additive manufacturing approaches have emerged as a promising means for rapid and iterative changes in the geometry of microdevices.
View Article and Find Full Text PDFMicro-heart muscle arrays enable medium-throughput experiments to model the cardiac response to a variety of environmental and pharmaceutical effects. Here, we describe stem cell culture maintenance, methods for successful cardiac differentiation, and formation of micro-heart muscle arrays for electrophysiology and molecular biology assays.
View Article and Find Full Text PDFMechanical loading plays a critical role in cardiac pathophysiology. Engineered heart tissues derived from human induced pluripotent stem cells (iPSCs) allow rigorous investigations of the molecular and pathophysiological consequences of mechanical cues. However, many engineered heart muscle models have complex fabrication processes and require large cell numbers, making it difficult to use them together with iPSC-derived cardiomyocytes to study the influence of mechanical loading on pharmacology and genotype-phenotype relationships.
View Article and Find Full Text PDF