A complex-valued data-based model with th order autoregressive errors and general real/imaginary error covariance structure is proposed as an alternative to the commonly-used magnitude-only data-based autoregressive model for fMRI time series. Likelihood-ratio-test-based activation statistics are derived for both models and compared for experimental and simulated data. For a dataset from a right-hand finger-tapping experiment, the activation map obtained using complex-valued modeling more clearly identifies the primary activation region (left functional central sulcus) than the magnitude-only model.
View Article and Find Full Text PDFIt is well-known that Gaussian modeling of functional Magnetic Resonance Imaging (fMRI) magnitude time-course data, which are truly Rice-distributed, constitutes an approximation, especially at low signal-to-noise ratios (SNRs). Based on this fact, previous work has argued that Rice-based activation tests show superior performance over their Gaussian-based counterparts at low SNRs and should be preferred in spite of the attendant additional computational and estimation burden. Here, we revisit these past studies and after identifying and removing their underlying limiting assumptions and approximations, provide a more comprehensive comparison.
View Article and Find Full Text PDF