Sole-source business models for genetic testing can create private databases containing information vital to interpreting the clinical significance of human genetic variations. But incomplete access to those databases threatens to impede the clinical interpretation of genomic medicine. National health systems and insurers, regulators, researchers, providers and patients all have a strong interest in ensuring broad access to information about the clinical significance of variants discovered through genetic testing.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2012
Rapid advances in DNA sequencing promise to enable new diagnostics and individualized therapies. Achieving personalized medicine, however, will require extensive research on highly reidentifiable, integrated datasets of genomic and health information. To assist with this, participants in the Personal Genome Project choose to forgo privacy via our institutional review board- approved "open consent" process.
View Article and Find Full Text PDFAs scientific understandings of genetics advance, researchers require increasingly rich datasets that combine genomic data from large numbers of individuals with medical and other personal information. Linking individuals' genetic data and personal information precludes anonymity and produces medically significant information--a result not contemplated by the established legal and ethical conventions governing human genomic research. To pursue the next generation of human genomic research and commerce in a responsible fashion, scientists, lawyers, and regulators must address substantial new issues, including researchers' duties with respect to clinically significant data, the challenges to privacy presented by genomic data, the boundary between genomic research and commerce, and the practice of medicine.
View Article and Find Full Text PDFThe cost of a diploid human genome sequence has dropped from about $70M to $2000 since 2007--even as the standards for redundancy have increased from 7x to 40x in order to improve call rates. Coupled with the low return on investment for common single-nucleotide polylmorphisms, this has caused a significant rise in interest in correlating genome sequences with comprehensive environmental and trait data (GET). The cost of electronic health records, imaging, and microbial, immunological, and behavioral data are also dropping quickly.
View Article and Find Full Text PDFRecent advances in high-throughput genomic technologies are showing concrete results in the form of an increasing number of genome-wide association studies and in the publication of comprehensive individual genome-phenome data sets. As a consequence of this flood of information the established concepts of research ethics are stretched to their limits, and issues of privacy, confidentiality and consent for research are being re-examined. Here, we show the feasibility of the co-development of scientific innovation and ethics, using the open-consent framework that was implemented in the Personal Genome Project as an example.
View Article and Find Full Text PDF