Wildfires emit solid-state strongly absorptive brown carbon (solid S-BrC, commonly known as tar ball), critical to Earth's radiation budget and climate, but their highly variable light absorption properties are typically not accounted for in climate models. Here, we show that from a Pacific Northwest wildfire, over 90% of particles are solid S-BrC with a mean refractive index of 1.49 + 0.
View Article and Find Full Text PDFEnviron Sci Technol
November 2023
Tar balls are brown carbonaceous particles that are highly viscous, spherical, amorphous, and light absorbing. They are believed to form in biomass burning smoke plumes during transport in the troposphere. Tar balls are also believed to have a significant impact on the Earth's radiative balance, but due to poorly characterized optical properties, this impact is highly uncertain.
View Article and Find Full Text PDFThe diffusivity of semivolatile organic compounds (SVOCs) in the bulk particle phase of a viscous atmospheric secondary organic aerosol (SOA) can have a profound impact on aerosol growth and size distribution dynamics. Here, we investigate the bulk diffusivity of SVOCs formed from photo-oxidation of isoprene as they partition to a bimodal aerosol consisting of an Aitken (potassium sulfate) and accumulation mode (aged α-pinene SOA) particles as a function of relative humidity (RH). The model analysis of the observed size distribution evolution shows that liquid-like diffusion coefficient values of > 10 cm s fail to explain the growth of the Aitken mode.
View Article and Find Full Text PDFEnviron Sci Process Impacts
November 2018
Fly ash can undergo aging in the atmosphere through interactions with sulfuric acid and water. These reactions could result in chemical and physical changes that could affect the cloud condensation or ice nucleation activity of fly ash particles. To explore this process, different water and acid treated fly ash types were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), electron dispersive spectroscopy (EDS), selected area diffraction (SAED), and inductively coupled plasma atomic emission spectroscopy (ICP-AES).
View Article and Find Full Text PDFEnvironmental transmission electron microscopy was employed to probe transformations in the size, morphology, and composition of individual atmospheric particles as a function of temperature. Two different heating devices were used and calibrated in this work: a furnace heater and a Micro Electro Mechanical System heater. The temperature calibration used sublimation temperatures of NaCl, glucose, and ammonium sulfate particles, and the melting temperature of tin.
View Article and Find Full Text PDFMineral dust aerosol is one of the largest contributors to global ice nuclei, but physical and chemical processing of dust during atmospheric transport can alter its ice nucleation activity. In particular, several recent studies have noted that sulfuric and nitric acids inhibit heterogeneous ice nucleation in the regime below liquid water saturation in aluminosilicate clay minerals. We have exposed kaolinite, KGa-1b and KGa-2, and montmorillonite, STx-1b and SWy-2, to aqueous sulfuric and nitric acid to determine the physical and chemical changes that are responsible for the observed deactivation.
View Article and Find Full Text PDFThe effects of aerosol particles on heterogeneous atmospheric chemistry and climate are determined in part by the internal arrangement of compounds within the particles. To characterize the morphology of internally mixed aerosol particles in the accumulation mode size regime, we have used cryo-transmission electron microscopy to investigate the phase separation behavior of dry, submicrometer particles composed of ammonium sulfate mixed with carboxylic acids (adipic, azelaic, citric, glutaric, malonic, pimelic, suberic, and succinic acid). Determining the morphology of dry particles is important for understanding laboratory studies of aerosol optical properties, reactivity, and cloud condensation nucleus activity, results from field instruments where aerosol particles are dried prior to analysis, and atmospheric processes like deposition mode heterogeneous ice nucleation that occur on dried particles.
View Article and Find Full Text PDFThe effects of aerosol particles on heterogeneous atmospheric chemistry and climate are determined in part by the internal arrangement of compounds within the particles. We have used cryo-transmission electron microscopy to investigate the phase separation behavior of model organic aerosol composed of ammonium sulfate internally mixed with succinic or pimelic acid. We have found that no particle with a diameter <170 nm for succinic acid and 270 nm for pimelic acid is phase separated.
View Article and Find Full Text PDFIt is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust.
View Article and Find Full Text PDF