The development of autologous chimeric antigen receptor T (CAR-T) cell therapies has revolutionized cancer treatment. Nevertheless, the delivery of CAR-T cell therapy faces challenges, including high costs, lengthy production times, and manufacturing failures. To overcome this, attempts have been made to develop allogeneic CAR-T cells using donor-derived conventional CD4 or CD8 T cells (T), but severe graft-versus-host disease (GvHD) and host immune rejection have made this challenging.
View Article and Find Full Text PDFWith recent clinical breakthroughs, immunotherapy has become the fourth pillar of cancer treatment. Particularly, immune cell-based therapies have been envisioned as a promising treatment option with curative potential for leukemia patients. Hence, an increasing number of preclinical and clinical studies focus on various approaches of immune cell-based therapy for treatment of acute leukemia (AL).
View Article and Find Full Text PDFSignificant improvements in the survival of patients with hematological cancers following hematopoietic stem cell transplantation provide evidence supporting the potency of immune cell-mediated anti-leukemic effects. Studies focusing on immune cell-based cancer therapies have made significant breakthroughs in the last few years. Adoptive cellular therapy (ACT), and chimeric antigen receptor (CAR) T cell therapy, in particular, has significantly increased the survival of patients with B cell acute lymphoblastic leukemia and aggressive B cell lymphoma.
View Article and Find Full Text PDF