Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) continues to be a global threat due to its ability to evolve and generate new subvariants, leading to new waves of infection. Additionally, other coronaviruses like Middle East respiratory syndrome coronavirus (MERS-CoV, formerly known as hCoV-EMC), which first emerged in 2012, persist and continue to present a threat of severe illness to humans. The continued identification of novel coronaviruses, coupled with the potential for genetic recombination between different strains, raises the possibility of new coronavirus clades of global concern emerging.
View Article and Find Full Text PDFBiomechanical signals from remodeled extracellular matrix (ECM) promote tumor progression. Here, we show that cell-matrix and cell-cell communication may be inherently linked and tuned through mechanisms of mechanosensitive biogenesis of trafficking vesicles. Pan-cancer analysis of cancer cells' mechanical properties (focusing primarily on cell stiffness) on substrates of varied stiffness and composition elucidated a heterogeneous cellular response to mechanical stimuli.
View Article and Find Full Text PDFInfection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. The primary receptor for SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2), yet new studies reveal the importance of additional extracellular co-receptors that mediate binding and host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens' cellular uptake.
View Article and Find Full Text PDFInfection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. In the case of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) has been identified as a necessary receptor, but not all ACE2-expressing cells are equally infected, suggesting that other extracellular factors are involved in host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens' cellular uptake.
View Article and Find Full Text PDFThe proper functions of tissues depend on the ability of cells to withstand stress and maintain shape. Central to this process is the cytoskeleton, comprised of three polymeric networks: F-actin, microtubules, and intermediate filaments (IFs). IF proteins are among the most abundant cytoskeletal proteins in cells; yet they remain some of the least understood.
View Article and Find Full Text PDFCell sensing of externally applied mechanical strain through integrin-mediated adhesions is critical in development and physiology of muscle, lung, tendon, and arteries, among others. We examined the effects of strain on force transmission through the essential cytoskeletal linker talin. Using a fluorescence-based talin tension sensor (TS), we found that uniaxial stretch of cells on elastic substrates increased tension on talin, which was unexpectedly independent of the orientation of the focal adhesions relative to the direction of strain.
View Article and Find Full Text PDFIntegrin conformational dynamics are critical to their receptor and signaling functions in many cellular processes, including spreading, adhesion, and migration. However, assessing integrin conformations is both experimentally and computationally challenging because of limitations in resolution and dynamic sampling. Thus, structural changes that underlie transitions between conformations are largely unknown.
View Article and Find Full Text PDFActin-cross-linking proteins assemble actin filaments into higher-order structures essential for orchestrating cell shape, adhesion, and motility. Missense mutations in the tandem calponin homology domains of their actin-binding domains (ABDs) underlie numerous genetic diseases, but a molecular understanding of these pathologies is hampered by the lack of high-resolution structures of any actin-cross-linking protein bound to F-actin. Here, taking advantage of a high-affinity, disease-associated mutant of the human filamin A (FLNa) ABD, we combine cryo-electron microscopy and functional studies to reveal at near-atomic resolution how the first calponin homology domain (CH1) and residues immediately N-terminal to it engage actin.
View Article and Find Full Text PDFIntegrins are abundant heterodimeric cell-surface adhesion receptors essential in multicellular organisms. Integrin function is dynamically modulated by endo-exocytic trafficking, however, major mysteries remain about where, when, and how this occurs in living cells. To address this, here we report the generation of functional recombinant β1 integrins with traceable tags inserted in an extracellular loop.
View Article and Find Full Text PDFIntegrins are heterodimeric transmembrane adhesion receptors that couple the actin cytoskeleton to the extracellular environment and bidirectionally relay signals across the cell membrane. These processes are critical for cell attachment, migration, differentiation, and survival, and therefore play essential roles in metazoan development, physiology, and pathology. Integrin-mediated adhesions are regulated by diverse factors, including the conformation-specific affinities of integrin receptors for their extracellular ligands, the clustering of integrins and their intracellular binding partners into discrete adhesive structures, mechanical forces exerted on the adhesion, and the intracellular trafficking of integrins themselves.
View Article and Find Full Text PDFMultiple endocrine neoplasia type 1 (MEN1) is an inherited tumor syndrome that includes susceptibility to pancreatic islet tumors. This syndrome results from mutations in the MEN1 gene, encoding menin. Although menin acts as an oncogenic cofactor for mixed lineage leukemia (MLL) fusion protein-mediated histone H3 lysine 4 methylation, the precise basis for how menin suppresses gene expression and proliferation of pancreatic beta cells remains poorly understood.
View Article and Find Full Text PDFCytochrome P450 family 1 (CYP1) includes four subfamilies of enzymes: CYP1A, CYP1B, CYP1C, and CYP1D. In many vertebrates, CYP1A, 1B, and 1C expression is induced by agonists of the aryl hydrocarbon receptor, including toxic contaminants such as chlorinated dioxins, coplanar chlorinated biphenyls, and polynuclear aromatic hydrocarbons. Assessed at the level of mRNA, protein, or enzyme activity, CYP1s (especially CYP1As) represent potent and popular biomarkers of contaminant exposure in aquatic vertebrates.
View Article and Find Full Text PDF