Publications by authors named "Daniel V Ebner"

Here, we present a protocol for lentiviral delivery of CRISPR-Cas9 to human induced pluripotent stem cell (iPSC)-derived macrophages using co-incubation with VPX virus-like particles (VPX-VLPs). We describe steps for producing polybrene and puromycin kill curves, VPX viral production, and VPX-VLP titration by western blotting. We then detail procedures for iPSC macrophage precursor lentiviral transduction and lentiviral CRISPR-Cas9-based knockout in iPSC-derived macrophages.

View Article and Find Full Text PDF

We recently reported that genetic or pharmacological inhibition of insulin-like growth factor receptor (IGF-1R) slows DNA replication and induces replication stress by downregulating the regulatory subunit RRM2 of ribonucleotide reductase, perturbing deoxynucleotide triphosphate (dNTP) supply. Aiming to exploit this effect in therapy we performed a compound screen in five breast cancer cell lines with IGF neutralising antibody xentuzumab. Inhibitor of checkpoint kinase CHK1 was identified as a top screen hit.

View Article and Find Full Text PDF

Insights into oncogenesis derived from cancer susceptibility loci (SNP) hold the potential to facilitate better cancer management and treatment through precision oncology. However, therapeutic insights have thus far been limited by our current lack of understanding regarding both interactions of these loci with somatic cancer driver mutations and their influence on tumorigenesis. For example, although both germline and somatic genetic variation to the p53 tumor suppressor pathway are known to promote tumorigenesis, little is known about the extent to which such variants cooperate to alter pathway activity.

View Article and Find Full Text PDF

Inhibition of IGF receptor (IGF1R) delays repair of radiation-induced DNA double-strand breaks (DSB), prompting us to investigate whether IGF1R influences endogenous DNA damage. Here we demonstrate that IGF1R inhibition generates endogenous DNA lesions protected by 53BP1 bodies, indicating under-replicated DNA. In cancer cells, inhibition or depletion of IGF1R delayed replication fork progression accompanied by activation of ATR-CHK1 signaling and the intra-S-phase checkpoint.

View Article and Find Full Text PDF

Introduction: Pre-clinical testing of small molecules for therapeutic development across many pathologies relies on the use of in-vitro and in-vivo models. When designed and implemented well, these models serve to predict the clinical outcome as well as the toxicity of the evaluated therapies. The two-dimensional (2D) reductionist approach where cells are incubated in a mono-layer on hard plastic microtiter plates is relatively inexpensive but not physiologically relevant.

View Article and Find Full Text PDF

High-content screening to monitor disease-modifying phenotypes upon small-molecule addition has become an essential component of many drug and target discovery platforms. One of the most common phenotypic approaches, especially in the field of oncology research, is the assessment of cell viability. However, frequently used viability readouts employing metabolic proxy assays based on homogeneous colorimetric/fluorescent reagents are one-dimensional, provide limited information, and can in many cases yield conflicting or difficult-to-interpret results, leading to misinterpretation of data and wasted resources.

View Article and Find Full Text PDF

Short hairpin RNA (shRNA)-pooled screening is a valuable and cost-effective tool for assaying the contribution of individual genes to cell viability and proliferation on a genomic scale. Here we describe the key considerations for the design and execution of a pooled shRNA screen to identify determinants of radiosensitivity.

View Article and Find Full Text PDF

Colony formation is the gold standard assay for determining reproductive cell death after radiation treatment, since effects on proliferation often do not reflect survival. We have developed a high-throughput radiosensitivity screening method based on clonogenicity and screened a siRNA library against kinases. Thiamine pyrophosphokinase-1 (TPK1), a key component of Vitamin B1/thiamine metabolism, was identified as a target for radiosensitization.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl3bked60v643brclac6n14j51b9rh0qe): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once