Herein, we report progress toward a metabotropic glutamate receptor subtype 1 (mGlu) positive allosteric modulator (PAM) clinical candidate and the discovery of VU6024578/BI02982816. From a weak high-throughput screening hit (VU0538160, EC > 10 μM, 71% Glu), optimization efforts improved functional potency over 185-fold to deliver the selective (inactive on mGlu) and CNS penetrant (rat K = 0.99, K = 0.
View Article and Find Full Text PDFBioactive compounds extracted from plants can provide wide health benefits. However, some molecules have limited applications as pharmaceuticals due to their limited solubility, poor bioavailability, and low stability when exposed to environmental factors. Their integration in formulations that can deliver them to physiological targets while preserving their biological activity can enhance their usage in improving human health.
View Article and Find Full Text PDFBismuth ferrite (BiFeO, BFO) is still widely investigated both because of the great diversity of its possible applications and from the perspective of intrinsic defect engineering in the perovskite structure. Defect control in BiFeO semiconductors could provide a key technology for overcoming undesirable limitations, namely, a strong leakage current, which is attributed to the presence of oxygen vacancies () and Bi vacancies (). Our study proposes a hydrothermal method for the reduction of the concentration of during the ceramic synthesis of BiFeO.
View Article and Find Full Text PDFBackground: Without meaningful, intuitive sensory feedback, even the most advanced myoelectric devices require significant cognitive demand to control. The dermal sensory regenerative peripheral nerve interface (DS-RPNI) is a biological interface designed to establish high-fidelity sensory feedback from prosthetic limbs.
Methods: DS-RPNIs were constructed in rats by securing fascicles of residual sensory peripheral nerves into autologous dermal grafts, with the objectives of confirming regeneration of sensory afferents within DS-RPNIs and establishing the reliability of afferent neural response generation with either mechanical or electrical stimulation.
"Elaboration of New Materials Using Hydrothermal Methods" is a new and open Special Issue of , which aims to publish original research and review papers on that present state-of-the-art advances in the research on the hydrothermal synthesis of new materials [...
View Article and Find Full Text PDFSix new bio-inspired flavylium salts were synthesized and investigated by a combined computational and experimental study for dye-sensitized solar cell applications. The compounds were characterized by FT-IR, UV-Vis, NMR spectroscopy, and LC-MS spectrometry techniques. The pH-dependent photochromic properties of the flavylium dyes were investigated through a UV-Vis spectroscopy study and revealed that they follow the same network of chemical reactions as anthocyanins upon pH changes.
View Article and Find Full Text PDFThe goal of this research was to design novel chloro-substituted salicylanilide derivatives and their β-cyclodextrin complexes in order to obtain efficient antibacterial compounds and to demonstrate the beneficial role of complexation on the efficiency of these compounds. Thus, salicylanilide derivatives, esters, and hydrazides were obtained by microwave-assisted synthesis and their structure proven based on FTIR and NMR spectra. In order to improve water solubility, chemical and physical stability, and drug distribution through biological membranes, the inclusion complexes of the ethyl esters in β-cyclodextrin were also obtained using kneading.
View Article and Find Full Text PDFIntracellular tau inclusions are a pathological hallmark of Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and other sporadic neurodegenerative tauopathies. Recent in vitro and in vivo studies have shown that tau aggregates may spread to neighbouring cells and functionally connected brain regions, where they can seed further tau aggregation. This process is referred to as tau propagation.
View Article and Find Full Text PDFBackground: Regenerative peripheral nerve interfaces (RPNIs) transduce neural signals to provide high-fidelity control of neuroprosthetic devices. Traditionally, rat RPNIs are constructed with ~150 mg of free skeletal muscle grafts. It is unknown whether larger free muscle grafts allow RPNIs to transduce greater signal.
View Article and Find Full Text PDFObjectives: To investigate the therapeutic effects of sumatriptan in a rat model of spinal cord injury (SCI) and possible anti-inflammatory and analgesic mechanisms underlying this effect.
Methods: Using an aneurysm mini-clip model of contusive SCI, T9-10 laminectomies were performed for 60 male rats. Animals were divided into six experimental groups () as follows: a minocycline administered positive control group, a saline-vehicle negative control group, a sham-operated group, and three experimental groups which received separate doses of sumatriptan (0.
Muscarinic Designer Receptors Exclusively Activated by Designer Drugs (DREADD) gated by clozapine-N-oxide (CNO) allow selective G-protein cascade activation in genetically specified cell-types in vivo. Here we compare the pharmacokinetics, off-target effects and efficacy of CNO, clozapine (CLZ) and compound 21 (Cmpd-21) at the inhibitory DREADD human Gi-coupled M4 muscarinic receptor (hM4Di). The half maximal effective concentration (EC) of CLZ was substantially lower (0.
View Article and Find Full Text PDFIntroduction: Regenerative peripheral nerve interfaces (RPNIs) are biological constructs which amplify neural signals and have shown long-term stability in rat models. Real-time control of a neuroprosthesis in rat models has not yet been demonstrated. The purpose of this study was to: a) design and validate a system for translating electromyography (EMG) signals from an RPNI in a rat model into real-time control of a neuroprosthetic hand, and; b) use the system to demonstrate RPNI proportional neuroprosthesis control.
View Article and Find Full Text PDFMultiple therapeutic opportunities have been suggested for compounds capable of selective activation of metabotropic glutamate 3 (mGlu) receptors, but small molecule tools are lacking. As part of our ongoing efforts to identify potent, selective, and systemically bioavailable agonists for mGlu and mGlu receptor subtypes, a series of C4-N-linked variants of (1 S,2 S,5 R,6 S)-2-amino-bicyclo[3.1.
View Article and Find Full Text PDFBackground The Na1.7 subtype of voltage-gated sodium channels is specifically expressed in sensory and sympathetic ganglia neurons where it plays an important role in the generation and transmission of information related to pain sensation. Human loss or gain-of-function mutations in the gene encoding Na1.
View Article and Find Full Text PDFLoss of synapses or alteration of synaptic activity is associated with cognitive impairment observed in a number of psychiatric and neurological disorders, such as schizophrenia and Alzheimer's disease. Therefore successful development of in vitro methods that can investigate synaptic function in a high-throughput format could be highly impactful for neuroscience drug discovery. We present here the development, characterisation and validation of a novel high-throughput in vitro model for assessing neuronal function and synaptic transmission in primary rodent neurons.
View Article and Find Full Text PDFPainful terminal neuromas resulting from nerve injury following amputation are common. However, there is currently no universally accepted gold standard of treatment for this condition. A comprehensive literature review is presented on the treatment of terminal neuromas.
View Article and Find Full Text PDFBackground: Regenerative Peripheral Nerve Interfaces (RPNIs) are neurotized muscle grafts intended to produce electromyographic signals suitable for motorized prosthesis control. Two RPNIs producing independent agonist/antagonist signals are required for each control axis; however, it is unknown whether signals from adjacent RPNIs are independent. The purpose of this work was to determine signaling characteristics from two adjacent RPNIs, the first neurotized by a foot dorsi-flexor nerve and the second neurotized by a foot plantar-flexor nerve in a rodent model.
View Article and Find Full Text PDFConnexin (Cx) proteins and gap junctions support the formation of neuronal and glial syncytia that are linked to different forms of rhythmic firing and oscillatory activity in the CNS. In this study, quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to profile developmental expression of two specific Cx proteins, namely glial Cx43 and neuronal Cx36, in postnatal lumbar spinal cord aged 4, 7, and 14 days. Extracellular electrophysiology was used to determine the contribution of Cx36 and Cx43 to a previously described form of 4-aminopyridine (4-AP)-induced 4-12 Hz rhythmic activity within substantia gelatinosa (SG) of rat neonatal dorsal horn (DH) in vitro.
View Article and Find Full Text PDFObjective: Regenerative peripheral nerve interfaces (RPNIs) are neurotized free autologous muscle grafts equipped with electrodes to record myoelectric signals for prosthesis control. Viability of rat RPNI constructs have been demonstrated using evoked responses. In vivo RPNI characterization is the next critical step for assessment as a control modality for prosthetic devices.
View Article and Find Full Text PDFN-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that play an important role in synaptic plasticity and learning and memory formation. Malfunctioning of NMDARs, in particular the reduction in NMDAR activity, is thought to be implicated in major neurological disorders. NMDAR positive allosteric modulators (PAMs) represent potential therapeutic interventions for restoring normal NMDAR function.
View Article and Find Full Text PDFThe existence of α7β2 nicotinic acetylcholine receptors (nAChRs) has recently been demonstrated in both the rodent and human brain. Since α7-containing nAChRs are promising drug targets for schizophrenia and Alzheimer's disease, it is critical to determine whether α7β2 nAChRs are present in the human brain, in which brain areas, and whether they differ functionally from α7 nAChR homomers. We used α-bungarotoxin to affinity purify α7-containing nAChRs from surgically excised human temporal cortex, and found that α7 subunits co-purify with β2 subunits, indicating the presence of α7β2 nAChRs in the human brain.
View Article and Find Full Text PDFNeurons derived from human induced pluripotent stem cells (iPSCs) represent a potentially valuable tool for the characterisation of neuronal receptors and ion channels. Previous studies on iPSC-derived neuronal cells have reported the functional characterisation of a variety of receptors and ion channels, including glutamate receptors, γ-aminobutyric acid (GABA) receptors and several voltage-gated ion channels. In the present study we have examined the expression and functional properties of nicotinic acetylcholine receptors (nAChRs) in human iPSC-derived neurons.
View Article and Find Full Text PDFBackground: Genetic causes of exaggerated or reduced pain sensitivity in humans are well known. Recently, single nucleotide polymorphisms (SNPs) in the gene P2RX7, coding for the ATP-gated ion channel P2X7, have been described that cause gain-of-function (GOF) and loss-of-function (LOF), respectively of this channel. Importantly, P2RX7 SNPs have been associated with more or less severe pain scores in patient suffering of post-mastectomy pain and osteoarthritis.
View Article and Find Full Text PDF