This paper introduces a noise augmentation technique designed to enhance the robustness of state-of-the-art (SOTA) deep learning models against degraded image quality, a common challenge in long-term recording systems. Our method, demonstrated through the classification of digital holographic images, utilizes a novel approach to synthesize and apply random colored noise, addressing the typically encountered correlated noise patterns in such images. Empirical results show that our technique not only maintains classification accuracy in high-quality images but also significantly improves it when given noisy inputs without increasing the training time.
View Article and Find Full Text PDFA hologram, measured by using appropriate coherent illumination, records all substantial volumetric information of the measured sample. It is encoded in its interference patterns and, from these, the image of the sample objects can be reconstructed in different depths by using standard techniques of digital holography. We claim that a 2D convolutional network (CNN) cannot be efficient in decoding this volumetric information spread across the whole image as it inherently operates on local spatial features.
View Article and Find Full Text PDFWe adopted an unpaired neural network training technique, namely CycleGAN, to generate bright-field microscope-like images from hologram reconstructions. The motivation for unpaired training in microscope applications is that the construction of paired/parallel datasets is cumbersome or sometimes not even feasible, for example, lensless or flow-through holographic measuring setups. Our results show that the proposed method is applicable in these cases and provides comparable results to the paired training.
View Article and Find Full Text PDF