A method for calculating the free energy difference between two structurally defined conformational states of a chemical system is developed. A path is defined using a previously reported collective variable that interpolates between two or more conformations, and a restraint is introduced in order to keep the system close to the path. The evolution of the system along the path, which typically presents a high free energy barrier, is generated using enhanced sampling schemes.
View Article and Find Full Text PDFAdvanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models and algorithmic improvements that can ameliorate their cost, underdeveloped interfaces and limited dissemination in computational code bases that are widely used in the computational chemistry community, and software implementations that have not kept pace with modern high-performance computing (HPC) architectures, such as multicore CPUs and modern graphics processing units (GPUs). In this Feature Article we review recent progress made in these areas, including well-defined polarization approximations and new multipole electrostatic formulations, novel methods for solving the mutual polarization equations and increasing the MD time step, combining linear-scaling electronic structure methods with new QM/MM methods that account for mutual polarization between the two regions, and the greatly improved software deployment of these models and methods onto GPU and CPU hardware platforms.
View Article and Find Full Text PDFMolecular dynamics remains one of the most widely used computational tools in the theoretical molecular sciences to sample an equilibrium ensemble distribution and/or to study the dynamical properties of a system. The efficiency of a molecular dynamics calculation is limited by the size of the time step that can be employed, which is dictated by the highest frequencies in the system. However, many properties of interest are connected to low-frequency, long time-scale phenomena, requiring many small time steps to capture.
View Article and Find Full Text PDF