Publications by authors named "Daniel T Case"

Cholinergic neurons in the basal forebrain project heavily to the main olfactory bulb, the first processing station in the olfactory pathway. The projections innervate multiple layers of the main olfactory bulb and strongly influence odor discrimination, detection, and learning. The precise underlying circuitry of this cholinergic input to the main olfactory bulb remains unclear, however.

View Article and Find Full Text PDF

Unlabelled: The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson's disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release.

View Article and Find Full Text PDF

The vesicular glutamate transporter 3 (VGLUT3) is expressed at several locations not normally associated with glutamate release. Although the function of this protein has been generally elusive, when expressed in non-glutamatergic synaptic terminals, VGLUT3 can not only allow glutamate co-transmission but also synergize the action of non-glutamate vesicular transporters. Interestingly, in the immature glycinergic projection between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO) of auditory brainstem, the transient early expression of VGLUT3 is required for normal developmental refinement.

View Article and Find Full Text PDF

Several transcription factors and methods have been used to convert fibroblasts directly to neural fate and have provided insights into molecular mechanisms as to how each of these required factors orchestrate neural fate conversion. Here, we provide evidence and detailed characterization of the direct conversion process of primary adult human fibroblasts (hFib) to neural progenitor cells (NPC) using OCT4 alone. Factors previously associated with neural cell fate conversion were induced during hFib-NPC(OCT-4) generation, where OCT-4 alone was sufficient to induce neural fate conversion without the use of promiscuous small-molecule manipulation.

View Article and Find Full Text PDF

The lateral superior olive (LSO) integrates excitatory inputs driven by sound arriving at the ipsilateral ear with inhibitory inputs driven by sound arriving at the contralateral ear in order to compute interaural intensity differences needed for localizing high-frequency sound sources. Specific mechanisms necessary for developmental refinement of the inhibitory projection, which arises from the medial nucleus of the trapezoid body (MNTB), have only been partially deciphered. The demonstration that immature MNTB-LSO synapses release glutamate has led to a model in which early glutamate neurotransmission plays a major role in inhibitory plasticity.

View Article and Find Full Text PDF

Principal neurons of the lateral superior olive (LSO) compute the interaural intensity differences necessary for localizing high-frequency sounds. To perform this computation, the LSO requires precisely tuned, converging excitatory and inhibitory inputs that are driven by the two ears and that are matched for stimulus frequency. In rodents, the inhibitory inputs, which arise from the medial nucleus of the trapezoid body (MNTB), undergo extensive functional refinement during the first postnatal week.

View Article and Find Full Text PDF