Quantum mechanics postulates that measuring the qubit's wave function results in its collapse, with the recorded discrete outcome designating the particular eigenstate that the qubit collapsed into. We show that this picture breaks down when the qubit is strongly driven during measurement. More specifically, for a fast evolving qubit the measurement returns the time-averaged expectation value of the measurement operator, erasing information about the initial state of the qubit while completely suppressing the measurement backaction.
View Article and Find Full Text PDFJunctions created by coupling two superconductors via a semiconductor nanowire in the presence of high magnetic fields are the basis for the potential detection, fusion, and braiding of Majorana bound states. We study NbTiN/InSb nanowire/NbTiN Josephson junctions and find that the dependence of the critical current on the magnetic field exhibits gate-tunable nodes. This is in contrast with a well-known Fraunhofer effect, under which critical current nodes form a regular pattern with a period fixed by the junction area.
View Article and Find Full Text PDFSignatures of Majorana fermions have recently been reported from measurements on hybrid superconductor-semiconductor nanowire devices. Majorana fermions are predicted to obey special quantum statistics, known as non-Abelian statistics. To probe this requires an exchange operation, in which two Majorana fermions are moved around one another, which requires at least a simple network of nanowires.
View Article and Find Full Text PDF