A series of six mononuclear iron complexes of the type [Fe(X-bdt)(P(R)2N(Ph)2)(CO)] (P(R)2N(Ph)2 = 1,5-diaza-3,7-diphosphaoctane, bdt = benzenedithiolate with X = H, Cl2 or Me and R = Ph, Bn, Cyc or tert-Bu) was prepared. This new class of penta-coordinate iron complexes contains a free coordination site and a pendant base as essential structural features of the [FeFe]-hydrogenase active site. The bidentate nature of the P(R)2N(Ph)2 ligands was found to be crucial for the preferential formation of coordinatively unsaturated penta-coordinate complexes, which is supported by first principle calculations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2010
Molecular chaperones are known to be essential for avoiding protein aggregation in vivo, but it is still unclear how they affect protein folding mechanisms. We use single-molecule Förster resonance energy transfer to follow the folding of a protein inside the GroEL/GroES chaperonin cavity over a time range from milliseconds to hours. Our results show that confinement in the chaperonin decelerates the folding of the C-terminal domain in the substrate protein rhodanese, but leaves the folding rate of the N-terminal domain unaffected.
View Article and Find Full Text PDFThe first examples of rodlike donor-photosensitizer-acceptor arrays based on bis-2,6-di(quinolin-8-yl)pyridine Ru(II) complexes 1a and 3a for photoinduced electron transfer have been synthesized and investigated. The complexes are synthesized in a convergent manner and are isolated as linear, single isomers. Time-resolved absorption spectroscopy reveals long-lived, photoinduced charge-separated states (tau(CSS) (1a)=140 ns, tau(CSS) (3a)=200 ns) formed by stepwise electron transfer.
View Article and Find Full Text PDFThe use of plants as production hosts for recombinant glycoproteins, which is rapidly developing, requires methods for fast and reliable analysis of plant N-linked glycans. This study describes a simple small-scale method for the preparation of N-linked glycans from soluble plant protein and analysis thereof by matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI-TOF MS). Concentration and protease digestion of plant protein as well as deglycosylation is carried out in a single concentrator unit without the need for intermittent purification to minimize adsorptive loss and to facilitate handling.
View Article and Find Full Text PDF