Tumor-specific gene products, such as cancer/testis (CT) antigens, constitute promising targets for the development of T cell vaccines. Whereas CT antigens are frequently expressed in melanoma, their expression in colorectal cancers (CRC) remains poorly characterized. Here, we have studied the expression of the CT antigens MAGE-A3, MAGE-A4, MAGE-A10, NY-ESO-1 and SSX2 in CRC because of the presence of well-described HLA-A2-restricted epitopes in their sequences.
View Article and Find Full Text PDFThe isolation of subsets of Ag-specific T cells for in vitro and in vivo studies by FACS is compromised by the fact that the soluble MHC-peptide complexes and Abs used for staining, especially when combined, induce unwanted T cell activation and eventually apoptosis. This is especially a problem for CD8+ CTL, which are susceptible to activation-dependent cell death. In this study, we show that reversible MHC-peptide complexes (tetramers) can be prepared by conjugating MHC-peptide monomers with desthiobiotin (DTB; also called dethiobiotin) and multimerization by reaction with fluorescent streptavidin.
View Article and Find Full Text PDFAlthough increasing evidence suggests that CTL are important to fight the development of some cancers, the frequency of detectable tumor-specific T cells is low in cancer patients, and these cells have generally poor functional capacities, compared with virus-specific CD8(+) T cells. The generation with a vaccine of potent CTL responses against tumor Ags therefore remains a major challenge. In the present study, ex vivo analyses of Melan-A-specific CD8(+) T cells following vaccination with Melan-A peptide and CpG oligodeoxynucleotides revealed the successful induction in the circulation of effective melanoma-specific T cells, i.
View Article and Find Full Text PDFDespite major progress in T lymphocyte analysis in melanoma patients, TCR repertoire selection and kinetics in response to tumor Ags remain largely unexplored. In this study, using a novel ex vivo molecular-based approach at the single-cell level, we identified a single, naturally primed T cell clone that dominated the human CD8(+) T cell response to the Melan-A/MART-1 Ag. The dominant clone expressed a high-avidity TCR to cognate tumor Ag, efficiently killed tumor cells, and prevailed in the differentiated effector-memory T lymphocyte compartment.
View Article and Find Full Text PDFThe aim of T cell vaccines is the expansion of antigen-specific T cells able to confer immune protection against pathogens or tumors. Although increase in absolute cell numbers, effector functions and TCR repertoire of vaccine-induced T cells are often evaluated, their reactivity for the cognate antigen versus their cross-reactive potential is rarely considered. In fact, little information is available regarding the influence of vaccines on T cell fine specificity of antigen recognition despite the impact that this feature may have in protective immunity.
View Article and Find Full Text PDFIn HLA-A2 individuals, the CD8 T cell response against the differentiation Ag Melan-A is mainly directed toward the peptide Melan-A26-35. The murine Melan-A24-33 sequence encodes a peptide that is identical with the human Melan-A26-35 decamer, except for a Thr-to-Ile substitution at the penultimate position. Here, we show that the murine Melan-A24-33 is naturally processed and presented by HLA-A2 molecules.
View Article and Find Full Text PDFDirect identification as well as isolation of antigen-specific T cells became possible since the development of "tetramers" based on avidin-fluorochrome conjugates associated with mono-biotinylated class I MHC-peptide monomeric complexes. In principle, a series of distinct class I MHC-peptide tetramers, each labelled with a different fluorochrome, would allow to simultaneously enumerate as many unique antigen-specific CD8(+) T cells. Practically, however, only phycoerythrin and allophycocyanin conjugated tetramers have been generally available, imposing serious constraints for multiple labeling.
View Article and Find Full Text PDFClinical trials have shown that strong tumor antigen-specific CD8 T-cell responses are difficult to induce but can be achieved for T-cells specific for melanoma differentiation antigens, upon repetitive vaccination with stable emulsions prepared with synthetic peptides and incomplete Freund's adjuvant. Here, we show in four melanoma patients that ex vivo detectable T-cells and thus strong T-cell responses can also be induced against the more universal cancer-testis antigens NY-ESO-1 and Mage-A10. Interestingly, all patients had ex vivo detectable T-cell responses against multiple antigens after serial vaccinations with three peptides emulsified in incomplete Freund's adjuvant.
View Article and Find Full Text PDFAlloreactive T cells are thought to be a potentially rich source of high-avidity T cells with therapeutic potential since tolerance to self-Ags is restricted to self-MHC recognition. Given the particularly high frequency of alloreactive T cells in the peripheral immune system, we used numerous MHC class I multimers to directly visualize and isolate viral and tumor Ag-specific alloreactive CD8 T cells. In fact, all but one specificities screened were undetectable in ex vivo labeling.
View Article and Find Full Text PDFJ Immunol Methods
February 2006
The study of natural T cell responses against pathogens or tumors, as well as the assessment of new immunotherapy strategies aimed at boosting these responses, requires increasingly precise ex vivo analysis of blood samples. For practical reasons, studies are often performed using purified PBMC samples, usually cryopreserved. Here, we report on FACS analyses of peripheral blood T cells, performed by direct antibody staining of non-purified total blood.
View Article and Find Full Text PDFPurpose: To evaluate the toxicity, antitumoral effectiveness, and immunogenicity of repeated vaccinations with ALVAC miniMAGE-1/3, a recombinant canarypox virus containing a minigene encoding antigenic peptides MAGE-3(168-176) and MAGE-1(161-169), which are presented by HLA-A1 and B35 on tumor cells and can be recognized by cytolytic T lymphocytes (CTLs).
Materials And Methods: The vaccination schedule comprised four sequential injections of the recombinant virus, followed by three booster vaccinations with the MAGE-3(168-176) and MAGE-1(161-169) peptides. The vaccines were administered, both intradermally and subcutaneously, at 3-week intervals.
Adoptive transfer of autologous or allogenic T cells to patients is being used with increased frequency as a therapy for infectious diseases and cancer. However, many questions remain with regard to defining optimized procedures for preparation and selection of T cell populations for transfer. In a new study in this issue of the JCI, Gattinoni and colleagues used a TCR transgenic mouse model to examine in vitro-generated tumor antigen-specific CD8+ T cells at various stages of differentiation for their efficacy in adoptive immunotherapy against transplantable melanoma.
View Article and Find Full Text PDFImmunotherapy has become a standard approach for cancer management, through the use of cytokines (eg: interleukin-2) and monoclonal antibodies. Cancer vaccines hold promise as another form of immunotherapy, and there has been substantial progress in identifying shared antigens recognized by T cells, in developing vaccine approaches that induce antigen-specific T cell responses in cancer patients, and in developing new technology for monitoring immune responses in various human tissue compartments. Dramatic clinical regressions of human solid tumors have occurred with some cancer vaccines, but the rate of those responses remains low.
View Article and Find Full Text PDFGenes of the synovial sarcoma X breakpoint (SSX) family are expressed in different human tumors, including melanomas, but not in adult somatic tissues. Because of their specific expression at the tumor site, SSX-encoded Ags are potential targets for anticancer immunotherapy. In this study, we have analyzed CD4+ T cell responses directed against the Ag encoded by SSX-4.
View Article and Find Full Text PDFInduction of high frequencies of specific T cells by vaccination requires prime-boost regimens. To reach optimal immune responses, it is necessary to use different vectors for priming and boosting as e.g.
View Article and Find Full Text PDFThe induction of potent CD8+ T cell responses by vaccines to fight microbes or tumors remains a major challenge, as many candidates for human vaccines have proved to be poorly immunogenic. Deoxycytidyl-deoxyguanosin oligodeoxynucleotides (CpG ODNs) trigger Toll-like receptor 9, resulting in dendritic cell maturation that can enhance immunogenicity of peptide-based vaccines in mice. We tested whether a synthetic ODN, CpG 7909, could improve human tumor antigen-specific CD8+ T cell responses.
View Article and Find Full Text PDFImmunotherapy is being proposed to treat patients with hepatocellular carcinoma (HCC). However, more detailed knowledge on tumor Ag expression and specific immune cells is required for the preparation of highly targeted vaccines. HCC express a variety of tumor-specific Ags, raising the question whether CTL specific for such Ags exist in HCC patients.
View Article and Find Full Text PDFBecause of their specific expression in tumors of different histological types, the products of the SSX genes are important candidate targets for development of cancer vaccines. We have previously identified two immunodominant SSX-2-derived T cell epitopes recognized by HLA-A2-restricted CD8+ T cells (SSX-2 41-49) and HLA-DR11-restricted CD4+ T cells (SSX-2 45-59), respectively. In this study, we report the identification of an HLA-DR3-restricted epitope mapping to the 37-51 region of SSX-2, overlapping both previously identified epitopes.
View Article and Find Full Text PDFModern cancer therapies should strive not only to eliminate malignant tissues but also to preserve healthy tissues and the patient's quality of life. Antigen-specific immunotherapy approaches are promising for either aspect since they are designed to only act against tissues expressing 1 or more specified tumour antigens. In order to develop successful vaccine and adoptive transfer protocols, longitudinal monitoring of cancer patients taking part in clinical trials is mandatory.
View Article and Find Full Text PDFThe authors developed a standardized approach for immune monitoring of antigen-specific CD8+ T cells within peripheral blood lymphocytes (PBLs) that combines direct ex vivo analysis of Melan-A/MART-1 and influenza-specific CD8+ T cells with HLA-A2/peptide multimers and interferon-gamma ELISPOT assays. Here the authors assessed the quality of results obtained with 180 PBLs from healthy donors and melanoma patients. Reproducibility of the multimer assay was good (average of 15% variation).
View Article and Find Full Text PDFAccumulating evidence supports the requirement for both tumor-specific CD8(+) and CD4(+) T cell responses for efficient tumor rejection to occur. Because of its expression in different tumor types, the cancer/testis Ag encoded by the synovial sarcoma X breakpoint 2 (SSX-2) gene is among the most relevant candidates for the development of generic cancer vaccines. The immunogenicity of SSX-2 has been previously corroborated by detection of specific humoral and CD8(+) T cell responses in cancer patients.
View Article and Find Full Text PDFThe purpose of this study was to test melanoma vaccines consisting of peptides and immunological adjuvants for optimal immunogenicity and to evaluate laboratory immune monitoring for in vivo relevance. Forty-nine HLA-A2 positive patients with Melan-A positive melanoma were repeatedly vaccinated with Melan-A peptide, with or without immune adjuvant AS02B (QS21 and MPL) or IFA. Peptide-specific CD8 T cells in PBLs were analyzed ex vivo using fluorescent HLA-A2/Melan-A multimers and IFN-gamma ELISPOT assays.
View Article and Find Full Text PDF