Publications by authors named "Daniel Soohoo"

Remdesivir (RDV; GS-5734, Veklury), the first FDA-approved antiviral to treat COVID-19, is a single-diastereomer monophosphoramidate prodrug of an adenosine analogue. RDV is taken up in the target cells and metabolized in multiple steps to form the active nucleoside triphosphate (TP) (GS-443902), which, in turn, acts as a potent and selective inhibitor of multiple viral RNA polymerases. In this report, we profiled the key enzymes involved in the RDV metabolic pathway with multiple parallel approaches: (i) bioinformatic analysis of nucleoside/nucleotide metabolic enzyme mRNA expression using public human tissue and lung single-cell bulk mRNA sequence (RNA-seq) data sets, (ii) protein and mRNA quantification of enzymes in human lung tissue and primary lung cells, (iii) biochemical studies on the catalytic rate of key enzymes, (iv) effects of specific enzyme inhibitors on the GS-443902 formation, and (v) the effects of these inhibitors on RDV antiviral activity against SARS-CoV-2 in cell culture.

View Article and Find Full Text PDF

Late sodium current (late I) is enhanced during ischemia by reactive oxygen species (ROS) modifying the Na 1.5 channel, resulting in incomplete inactivation. Compound 4 (GS-6615, eleclazine) a novel, potent, and selective inhibitor of late I, is currently in clinical development for treatment of long QT-3 syndrome (LQT-3), hypertrophic cardiomyopathy (HCM), and ventricular tachycardia-ventricular fibrillation (VT-VF).

View Article and Find Full Text PDF

Antagonists of adenosine A2A receptors (A2A -antagonists) with different chemical structures have been developed by several pharmaceutical companies for the potential treatment of Parkinson's disease. Pharmacological characterization of these antagonists was incomplete, and different assay conditions were used in different labs. Therefore, we characterized the potencies, selectivities, and pharmacokinetic profiles of six prototypical A2A -antagonists.

View Article and Find Full Text PDF

New inhibitors of palmitoyl-CoA oxidation are based on the introduction of nitrogen heterocycles in the 'Western Portion' of the molecule. SAR studies led to the discovery of CVT-4325 (shown), a potent FOXi (IC50=380 nM rat mitochondria) with favorable PK properties (F=93%, t(1/2)=13.6h, dog).

View Article and Find Full Text PDF

We describe the synthesis of novel inhibitors of fatty acid oxidation as potential metabolic modulators for the treatment of stable angina. Replacement of the 2H-benzo[d]1,3-dioxolene ring system in our initial lead 3 with different benzthiazoles, benzoxazoles and introducing small alkyl substituents into the piperazine ring resulted in analogues with enhanced inhibitory activity against 1-(14)[C]-palmitoyl-CoA oxidation in isolated rat heart mitochondria (6, IC(50)=70 nM; 25, IC(50)=23 nM).

View Article and Find Full Text PDF

New inhibitors of palmitoylCoA oxidation were synthesized based on a structurally novel lead, CVT-3501 (1). Investigation of structure-activity relationships was conducted with respect to potency of inhibition of cardiac mitochondrial palmitoylCoA oxidation and metabolic stability. Potent and metabolically stable analogues 33, 42, and 43 were evaluated in vitro for cytochrome P450 inhibition and potentially adverse electrophysiological effects.

View Article and Find Full Text PDF