When faced with environmental changes, microbes often enter a temporary growth arrest during which they reprogram the expression of specific genes to adapt to the new conditions. A prime example of such a lag phase occurs when microbes need to switch from glucose to other, less-preferred carbon sources. Despite its industrial relevance, the genetic network that determines the duration of the lag phase has not been studied in much detail.
View Article and Find Full Text PDFRecent developments in synthetic biology enable one-step implementation of entire metabolic pathways in industrial microorganisms. A similarly radical remodelling of central metabolism could greatly accelerate fundamental and applied research, but is impeded by the mosaic organization of microbial genomes. To eliminate this limitation, we propose and explore the concept of "pathway swapping," using yeast glycolysis as the experimental model.
View Article and Find Full Text PDFAs a result of ancestral whole-genome and small-scale duplication events, the genomes of Saccharomyces cerevisiae and many eukaryotes still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enriched for functionally redundant paralogs. In ancestors of the Saccharomyces lineage, the duplication of glycolytic genes is purported to have played an important role leading to S.
View Article and Find Full Text PDFSaccharomyces cerevisiae harbours a large group of tightly controlled hexose transporters with different characteristics. Construction and characterization of S. cerevisiae EBY.
View Article and Find Full Text PDFLarge strain construction programs and functional analysis studies are becoming commonplace in Saccharomyces cerevisiae and involve construction of strains that carry multiple selectable marker genes. Extensive strain engineering is, however, severely hampered by the limited number of recyclable marker genes and by the reduced genome stability that occurs upon repeated use of heterologous recombinase-based marker removal methods. The present study proposes an efficient method to recycle multiple markers in S.
View Article and Find Full Text PDFIn vivo assembly of overlapping fragments by homologous recombination in Saccharomyces cerevisiae is a powerful method to engineer large DNA constructs. Whereas most in vivo assembly methods reported to date result in circular vectors, stable integrated constructs are often preferred for metabolic engineering as they are required for large-scale industrial application. The present study explores the potential of combining in vivo assembly of large, multigene expression constructs with their targeted chromosomal integration in S.
View Article and Find Full Text PDFBackground: In vivo recombination of overlapping DNA fragments for assembly of large DNA constructs in the yeast Saccharomyces cerevisiae holds great potential for pathway engineering on a small laboratory scale as well as for automated high-throughput strain construction. However, the current in vivo assembly methods are not consistent with respect to yields of correctly assembled constructs and standardization of parts required for routine laboratory implementation has not been explored. Here, we present and evaluate an optimized and robust method for in vivo assembly of plasmids from overlapping DNA fragments in S.
View Article and Find Full Text PDFDespite the large collection of selectable marker genes available for Saccharomyces cerevisiae, marker availability can still present a hurdle when dozens of genetic manipulations are required. Recyclable markers, counterselectable cassettes that can be removed from the targeted genome after use, are therefore valuable assets in ambitious metabolic engineering programs. In the present work, the new recyclable dominant marker cassette amdSYM, formed by the Ashbya gossypii TEF2 promoter and terminator and a codon-optimized acetamidase gene (Aspergillus nidulans amdS), is presented.
View Article and Find Full Text PDFThe industrial production of penicillin G by Penicillium chrysogenum requires the supplementation of the growth medium with the side chain precursor phenylacetate. The growth of P. chrysogenum with phenylalanine as the sole nitrogen source resulted in the extracellular production of phenylacetate and penicillin G.
View Article and Find Full Text PDF