Publications by authors named "Daniel Sol"

Despite vision being an essential sense for many animals, the intuitively appealing notion that the visual system has been shaped by environmental light conditions is backed by insufficient evidence. Based on a comprehensive phylogenetic comparative analysis of birds, we investigate if exposure to different light conditions might have triggered evolutionary divergence in the visual system through pressures on light sensitivity, visual acuity, and neural processing capacity. Our analyses suggest that birds that have adopted nocturnal habits evolved eyes with larger corneal diameters and, to a lesser extent, longer axial length than diurnal species.

View Article and Find Full Text PDF

Tropical species richness is threatened by habitat degradation associated with land-use conversion, yet the consequences for functional diversity remain little understood. Progress has been hindered by difficulties in obtaining comprehensive species-level trait information to characterize entire assemblages and insufficient appreciation that increasing land-cover heterogeneity potentially compensates for species loss. We examined the impacts of tropical deforestation associated with land-use heterogeneity on bird species richness, functional redundancy, functional diversity, and associated components (i.

View Article and Find Full Text PDF

Behavioural responses are widely held to allow animals to cope with human-induced environmental changes. Less often appreciated is that the absence of behavioural response can also be advantageous. This is particularly true when animals become tolerant to situations that may be perceived as risky, although the actual risk is nonexistent.

View Article and Find Full Text PDF

The rapid conversion of natural habitats to anthropogenic landscapes is threatening insect pollinators worldwide, raising concern regarding the negative consequences on their fundamental role as plant pollinators. However, not all pollinators are negatively affected by habitat conversion, as certain species find appropriate resources in anthropogenic landscapes to persist and proliferate. The reason why some species tolerate anthropogenic environments while most find them inhospitable remains poorly understood.

View Article and Find Full Text PDF

Single-nucleotide polymorphism (SNP) analysis is a powerful tool for population genetics, pedigree reconstruction and phenotypic trait mapping. However, the untapped potential of SNP markers to discriminate the sex of individuals in species with reduced sexual dimorphism or of individuals during immature stages remains a largely unexplored avenue. Here, we developed a novel protocol for molecular sexing of birds based on the detection of unique Z- and W-linked SNP markers.

View Article and Find Full Text PDF

The ubiquitous presence of microplastics (MPs) in natural water bodies reflects the global issue regarding these micropollutants. The main problem of MPs lies on the difficulty of removing these particles from water during wastewater and drinking water treatments. The release of MPs to the environment in treated wastewater contributed to the dispersion of these micropollutants, which enhances the harmful effect of MPs on fauna and flora.

View Article and Find Full Text PDF

Microplastics (MPs) represent a serious problem for the environment and for this reason they have been studied in many articles, especially their presence in aquatic environments and soils. MPs have been found in wastewater and sewage sludge from municipal wastewater treatment plants (WWTPs). Most part of the published works have focused on the detection and elimination of MPs in the water line and several reviews have been published in the last years.

View Article and Find Full Text PDF

At household level, clothes washing has been recognised as an emitter of microplastics (MPs) into the environment and it is supposed that dishwashing is also a source of MPs, although little attention has been paid so far. In this work, the emission of MPs released from dishwashing procedures at household level has been studied. The effect of different parameters such as time, temperature and type of detergent has been analysed.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers investigated the relationship between animal intelligence and brain size by examining neuron counts in 111 bird species.
  • They found that higher neuron counts in a specific brain region are linked to increased innovation propensity, a key indicator of intelligence.
  • The study suggests that both absolute and relative brain sizes, along with developmental factors, play a crucial role in cognitive performance and help resolve debates on brain expansion's biological significance.
View Article and Find Full Text PDF

The processes that allow some lineages to diversify rapidly at a global scale remain poorly understood. Although earlier studies emphasized the importance of dispersal, global expansions expose populations to novel environments and may also require adaptation and diversification across new niches. In this study, we investigated the contributions of these processes to the global radiation of crows and ravens (genus Corvus).

View Article and Find Full Text PDF

Biological invasions pose one of the most severe environmental challenges of the twenty-first century. A longstanding idea is that invasion risk is predictable based on the phylogenetic distance - and hence ecological resemblance - between non-native and native species. However, current evidence is contradictory.

View Article and Find Full Text PDF

Despite important recent advances in cognitive ecology, our current understanding of avian cognition still largely rests on research conducted on a few model taxa. Vultures are an ecologically distinctive group of species by being the only obligate carrion consumers across terrestrial vertebrates. Their unique scavenging lifestyle suggests they have been subject to particular selective pressures to locate scarce, unpredictable, ephemeral, and nutritionally challenging food.

View Article and Find Full Text PDF

Islands have long been recognized as key contributors to biodiversity because they facilitate geographic isolation and ecological divergence from mainland ancestors. However, island colonization has traditionally been considered an evolutionary dead-end process, and its consequences for continental biodiversity remain understudied. Here, we use the evolutionary radiation of Columbiformes (i.

View Article and Find Full Text PDF

When it comes to the brain, bigger is generally considered better in terms of cognitive performance. While this notion is supported by studies of birds and primates showing that larger brains improve learning capacity, similar evidence is surprisingly lacking for invertebrates. Although the brain of invertebrates is smaller and simpler than that of vertebrates, recent work in insects has revealed enormous variation in size across species.

View Article and Find Full Text PDF

Behavioural innovation and problem solving are widely considered to be important mechanisms by which animals respond to novel environmental challenges, including those induced by human activities. Despite their functional and ecological relevance, much of our current understanding of these processes comes from studies in vertebrates. Understanding of these processes in invertebrates has lagged behind partly because they are not perceived to have the cognitive machinery required.

View Article and Find Full Text PDF

AbstractBody size evolution is generally framed by the benefits of being large, while costs are largely overlooked. An important putative cost of being large is the need to extend development periods, which should increase exposure to predation and potentially select against larger size. In birds, this selection pressure can be important because predation is the main source of offspring mortality and predators should more readily detect the larger nests associated with larger body sizes.

View Article and Find Full Text PDF

Despite their miniature brains, insects exhibit substantial variation in brain size. Although the functional significance of this variation is increasingly recognized, research on whether differences in insect brain sizes are mainly the result of constraints or selective pressures has hardly been performed. Here, we address this gap by combining prospective and retrospective phylogenetic-based analyses of brain size for a major insect group, bees (superfamily Apoidea).

View Article and Find Full Text PDF

The undeniable presence of microplastics (MPs) in soil, air and, especially, in the aquatic environment has revealed them to be an emerging pollutant. One of the main sources contributing to the release of these microplastics into the environment is wastewater treatment plants (WWTPs). During the treatment of wastewater, these microparticles undergo incomplete retention, which leads to their discharge in huge amounts into water masses.

View Article and Find Full Text PDF

Microplastics (MPs) attract ever-increasing attention due to environmental concerns. Nowadays, they are ubiquitous across ecosystems, and research demonstrates that the origin is mainly terrestrial. Wastewater treatment plants (WWTPs) are a major source of MPs, especially fibres, in water masses.

View Article and Find Full Text PDF

New trinuclear gold(i) N-arylimidazolate cluster complexes have been synthesized from cationic [Au(CNR)2]+ isocyanide complexes and their structure and photoluminescence behavior have been compared with those of their 1-methylimidazolate counterpart. A drastic change in their photophysical properties was observed upon coordination of the Ag+ cation.

View Article and Find Full Text PDF

Urbanisation is driving rapid declines in species richness and abundance worldwide, but the general implications for ecosystem function and services remain poorly understood. Here, we integrate global data on bird communities with comprehensive information on traits associated with ecological processes to show that assemblages in highly urbanised environments have substantially different functional composition and 20% less functional diversity on average than surrounding natural habitats. These changes occur without significant decreases in functional dissimilarity between species; instead, they are caused by a decrease in species richness and abundance evenness, leading to declines in functional redundancy.

View Article and Find Full Text PDF

Behavioural plasticity is believed to reduce species vulnerability to extinction, yet global evidence supporting this hypothesis is lacking. We address this gap by quantifying the extent to which birds are observed behaving in novel ways to obtain food in the wild; based on a unique dataset of >3,800 novel behaviours, we show that species with a higher propensity to innovate are at a lower risk of global extinction and are more likely to have increasing or stable populations than less innovative birds. These results mainly reflect a higher tolerance of innovative species to habitat destruction, the main threat for birds.

View Article and Find Full Text PDF

Evidence is accumulating that species traits can spur their evolutionary diversification by influencing niche shifts, range expansions, and extinction risk. Previous work has shown that larger brains (relative to body size) facilitate niche shifts and range expansions by enhancing behavioral plasticity but whether larger brains also promote evolutionary diversification is currently backed by insufficient evidence. We addressed this gap by combining a brain size dataset for >1900 avian species worldwide with estimates of diversification rates based on two conceptually different phylogenetic-based approaches.

View Article and Find Full Text PDF

Understanding what affects population growth in novel environments is fundamental to forecast organisms' responses to global change, including biological invasions and land use intensification. Novel environments are challenging because they can cause maladaptation, increasing the risk of extinction by negative population growth. Animals can avoid extinction by improving the phenotype-environment match through behavioural responses, notably matching habitat choice and learning.

View Article and Find Full Text PDF

Soil fauna play a fundamental role on key ecosystem functions like organic matter decomposition, although how local assemblages are responding to climate change and whether these changes may have consequences to ecosystem functioning is less clear. Previous studies have revealed that a continued environmental stress may result in poorer communities by filtering out the most sensitive species. However, these experiments have rarely been applied to climate change factors combining multiyear and multisite standardized field treatments across climatically contrasting regions, which has limited drawing general conclusions.

View Article and Find Full Text PDF