Pollen tubes are highly polarized tip-growing cells that depend on cytosolic pH gradients for signaling and growth. Autoinhibited plasma membrane proton (H) ATPases (AHAs) have been proposed to energize pollen tube growth and underlie cell polarity, however, mechanistic evidence for this is lacking. Here we report that the combined loss of AHA6, AHA8, and AHA9 in Arabidopsis thaliana delays pollen germination and causes pollen tube growth defects, leading to drastically reduced fertility.
View Article and Find Full Text PDFCompared to animals, evolution of plant calcium (Ca) physiology has led to a loss of proteins for influx and small ligand-operated control of cytosolic Ca, leaving many Ca mechanisms unaccounted for. Here, we show a mechanism for sorting and activation of glutamate receptor-like channels (GLRs) by CORNICHON HOMOLOG (CNIH) proteins. Single mutants of pollen-expressed GLRs (GLRs) showed growth and Ca flux phenotypes expected for plasma membrane Ca channels.
View Article and Find Full Text PDF