Measurement is an essential component of quantum algorithms, and for superconducting qubits it is often the most error prone. Here, we demonstrate model-based readout optimization achieving low measurement errors while avoiding detrimental side effects. For simultaneous and midcircuit measurements across 17 qubits, we observe 1.
View Article and Find Full Text PDFQuantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC).
View Article and Find Full Text PDFThe promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 2 (about 10).
View Article and Find Full Text PDFSuperconducting qubits are an attractive platform for quantum computing since they have demonstrated high-fidelity quantum gates and extensibility to modest system sizes. Nonetheless, an outstanding challenge is stabilizing their energy-relaxation times, which can fluctuate unpredictably in frequency and time. Here, we use qubits as spectral and temporal probes of individual two-level-system defects to provide direct evidence that they are responsible for the largest fluctuations.
View Article and Find Full Text PDFMany superconducting qubit systems use the dispersive interaction between the qubit and a coupled harmonic resonator to perform quantum state measurement. Previous works have found that such measurements can induce state transitions in the qubit if the number of photons in the resonator is too high. We investigate these transitions and find that they can push the qubit out of the two-level subspace, and that they show resonant behavior as a function of photon number.
View Article and Find Full Text PDFFaster and more accurate state measurement is required for progress in superconducting qubit experiments with greater numbers of qubits and advanced techniques such as feedback. We have designed a multiplexed measurement system with a bandpass filter that allows fast measurement without increasing environmental damping of the qubits. We use this to demonstrate simultaneous measurement of four qubits on a single superconducting integrated circuit, the fastest of which can be measured to 99.
View Article and Find Full Text PDFWe demonstrate a superconducting resonator with variable coupling to a measurement transmission line. The resonator coupling can be adjusted through zero to a photon emission rate 1000 times the intrinsic resonator decay rate. We demonstrate the catch and release of photons in the resonator, as well as control of nonclassical Fock states.
View Article and Find Full Text PDFWe measure the dependence of qubit phase coherence and flux noise on inductor loop geometry. While wider inductor traces change neither the flux noise power spectrum nor the qubit dephasing time, increased inductance leads to a simultaneous increase in both. Using our new tomographic protocol for measuring low frequency flux noise, we make a direct comparison between the flux noise spectrum and qubit phase decay, finding agreement within 10% of theory.
View Article and Find Full Text PDFIn quantum information processing, qudits (d-level systems) are an extension of qubits that could speed up certain computing tasks. We demonstrate the operation of a superconducting phase qudit with a number of levels d up to d = 5 and show how to manipulate and measure the qudit state, including simultaneous control of multiple transitions. We used the qudit to emulate the dynamics of single spins with principal quantum number s = 1/2, 1, and 3/2, allowing a measurement of Berry's phase and the even parity of integer spins (and odd parity of half-integer spins) under 2pi-rotation.
View Article and Find Full Text PDF