The sirtuin 6 (SIRT6) participates in regulating glucose and lipid homeostasis. However, the function of SIRT6 in the process of cardiac pathogenesis caused by obesity-associated lipotoxicity remains to be unveiled. This study was designed to elucidate the role of SIRT6 in the pathogenesis of cardiac injury due to nutrition overload-induced obesity and explore the downstream signaling pathways affecting oxidative stress in the heart.
View Article and Find Full Text PDFCardiovascular diseases are the leading cause of death globally and more than four out of five cases are due to ischemic events. Cardiac fibroblasts (CF) contribute to normal heart development and function, and produce the post-ischemic scar. Here, we characterize the biochemical and functional aspects related to CF endurance to ischemia-like conditions.
View Article and Find Full Text PDFEndoG influences mitochondrial DNA replication and is involved in somatic cell proliferation. Here, we investigated the effect of expression on proliferation in different tumor models. Noteworthy, deficiency reduced proliferation of endometrial tumor cells expressing low PTEN/high -AKT levels, and deletion blunted the growth of PTEN-deficient 3D endometrial cultures.
View Article and Find Full Text PDFBackground: Little is known about the impact of trans-acting genetic variation on the rates with which proteins are synthesized by ribosomes. Here, we investigate the influence of such distant genetic loci on the efficiency of mRNA translation and define their contribution to the development of complex disease phenotypes within a panel of rat recombinant inbred lines.
Results: We identify several tissue-specific master regulatory hotspots that each control the translation rates of multiple proteins.
The apoptotic nuclease EndoG is involved in mitochondrial DNA replication. Previous results suggested that, in addition to regulate cardiomyocyte hypertrophy, EndoG could be involved in cell proliferation. Here, by using in vivo and cell culture models, we investigated the role of EndoG in cell proliferation.
View Article and Find Full Text PDFSkeletal muscle is responsible for the majority of glucose disposal in the body. Insulin resistance in the skeletal muscle accounts for 85-90% of the impairment of total glucose disposal in patients with type 2 diabetes (T2D). However, the mechanism remains controversial.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
June 2019
Background: NF-E2-related factor 2 (Nrf2) is a transcription factor playing cytoprotective effects in various pathological processes including oxidative stress and cardiac hypertrophy. Despite being a potential therapeutic target to treat several cardiomyopathies, the signaling underlying Nrf2-dependent cardioprotective action remains largely uncharacterized.
Aim: This study aimed to explore the signaling mediating the role of Nrf2 in the development of hypertensive cardiac pathogenesis by analyzing the response to Angiotensin II (Ang II) in the presence or absence of Nrf2 expression, both in vivo and in vitro.
Unlabelled: TARDBP (TAR DNA binding protein) is one of the components of neuronal aggregates in sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. We have developed a simple quantitative method to evaluate TARDBP splicing function that was applied to spinal cord, brainstem, motor cortex, and occipital cortex in ALS (n = 8) cases compared to age- and gender-matched control (n = 17). Then, we quantified the abundance of a TARDBP-spliced cryptic exon present in ATG4B (autophagy related 4B cysteine peptidase) mRNA.
View Article and Find Full Text PDFThe endonuclease G gene (Endog), which codes for a mitochondrial nuclease, was identified as a determinant of cardiac hypertrophy. How ENDOG controls cardiomyocyte growth is still unknown. Thus, we aimed at finding the link between ENDOG activity and cardiomyocyte growth.
View Article and Find Full Text PDFObjective: Protein kinase B2 (AKT2) is implicated in cardiomyocyte survival during various stress conditions. However, the role of AKT2 in heart function, cardiac hypertrophy and blood pressure (BP) control during hypertension is not fully understood. Therefore, we sought to determine whether the deletion of AKT2 protects cardiac function during angiotensin II/high-salt-diet (AngII/HSD) treatment and find out the signaling pathway.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2017
Objective: Obesity is associated with metabolic disorder and chronic inflammation that plays a crucial role in cardiovascular diseases. IL-6 is involved in regulating obesity-related lipid metabolism and inflammation. In this study, we sought to determine the role of IL-6 in high-fat diet (HFD)-induced cardiomyopathy and explore the signaling pathway.
View Article and Find Full Text PDFThe AKT (protein kinase B, PKB) family has been shown to participate in diverse cellular processes, including apoptosis. Previous studies demonstrated that protein kinase B2 (AKT2) mice heart was sensitized to apoptosis in response to ischemic injury. However, little is known about the mechanism and apoptotic signaling pathway.
View Article and Find Full Text PDFBrown adipose tissue (BAT) plays a central role in the regulation of whole-body energy and glucose homeostasis owing to its elevated capacity for lipid and glucose oxidation. The BAT thermogenic function, which is essential for the defense of body temperature against exposure to low environmental temperatures, relies on the expression in the inner membrane of brown adipocyte's mitochondria of uncoupling protein-1, a protein that uncouples substrate oxidation from oxidative phosphorylation and leads to the production of heat instead of ATP. BAT thermogenesis depends on proper mitochondrial biogenesis during the differentiation of brown adipocytes.
View Article and Find Full Text PDFAlthough it is widely accepted that apoptosis may contribute to cell death in myocardial infarction, experimental evidence suggests that adult cardiomyocytes repress the expression of the caspase-dependent apoptotic pathway. The aim of this study was to analyze the contribution of caspase-mediated apoptosis to myocardial ischemia-reperfusion injury. Cardiac-specific caspase-3 deficient/full caspase-7-deficient mice (Casp3/7DKO) and wild type control mice (WT) were subjected to in situ ischemia by left anterior coronary artery ligation for 45 min followed by 24 h or 28 days of reperfusion.
View Article and Find Full Text PDFExecutioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development.
View Article and Find Full Text PDFFriedreich ataxia (FRDA) is a hereditary disease caused by deficient frataxin expression. This mitochondrial protein has been related to iron homeostasis, energy metabolism, and oxidative stress. Patients with FRDA experience neurologic alterations and cardiomyopathy, which is the leading cause of death.
View Article and Find Full Text PDFThe neuronal long isoform of Fas Apoptotic Inhibitory Molecule (FAIM-L) protects from death receptor (DR)-induced apoptosis, yet its mechanism of protection remains unknown. Here, we show that FAIM-L protects rat neuronal Type II cells from Fas-induced apoptosis. XIAP has previously emerged as a molecular discriminator that is upregulated in Type II and downregulated in Type I apoptotic signaling.
View Article and Find Full Text PDFEndonuclease G (EndoG) has been largely related with a role in the modulation of a caspase-independent cell death pathway in many cellular systems. However, whether this protein plays a specific role in the brain remains to be elucidated. Here we have characterized the behavioral phenotype of EndoG(-/-) null mice and the expression of the nuclease among brain regions.
View Article and Find Full Text PDFPolypyrimidine tract binding protein (PTB) regulates pre-mRNA splicing, having special relevance for determining gene expression in the differentiating muscle. We have previously shown that PTB protein abundance is progressively reduced during heart development without reduction of its own transcript. Simultaneous reduction of histone deacetylase (HDAC) expression prompted us to investigate the potential link between these events.
View Article and Find Full Text PDFThe Myocyte Enhancer Factor-2 (MEF2) family of transcription factors regulates gene expression during cardiomyocyte differentiation and adaptation of the myocardium to stress. MEF2 activity is enhanced by increasing its transcription and by MAPK-dependent phosphorylation, and is reduced by binding to class-II Histone Deacetylases and by miR-1-mediated degradation of its transcript. Here we show that MEF2 protein abundance is regulated at the translational level, determining myocyte size, during hypertrophy.
View Article and Find Full Text PDFLeft ventricular mass (LVM) is a highly heritable trait and an independent risk factor for all-cause mortality. So far, genome-wide association studies have not identified the genetic factors that underlie LVM variation, and the regulatory mechanisms for blood-pressure-independent cardiac hypertrophy remain poorly understood. Unbiased systems genetics approaches in the rat now provide a powerful complementary tool to genome-wide association studies, and we applied integrative genomics to dissect a highly replicated, blood-pressure-independent LVM locus on rat chromosome 3p.
View Article and Find Full Text PDFMitochondrial dysfunction, caspase activation and caspase-dependent DNA fragmentation are involved in cell damage in many tissues. However, differentiated cardiomyocytes repress the expression of the canonical apoptotic pathway and their death during ischemia is caspase-independent. The atypical BH3-only protein Bnip3 is involved in the process leading to caspase-independent DNA fragmentation in cardiomyocytes.
View Article and Find Full Text PDFThe nerve growth factor receptor TrkA (tropomyosin-related kinase receptor) participates in the survival and differentiation of several neuronal populations. The C-terminal tail of TrkA contains a PPXY motif, the binding site of the E3 ubiquitin-ligase Nedd4-2 (neural precursor cell expressed, developmentally down-regulated 4-2). In order to analyze the role of Nedd4-2 ubiquitination on TrkA function, we generated three TrkA mutants, by introducing point mutations on conserved hydrophobic amino acids - Leu784 and Val790 switched to Ala.
View Article and Find Full Text PDFUpon activation, tumor necrosis factor alpha (TNF-alpha) receptor can engage apoptotic or survival pathways. Inhibition of macromolecular synthesis is known to sensitize cells to TNF-alpha-induced cell death. It is believed that this sensitization is due to the transcriptional blockade of genes regulated by NF-kappaB.
View Article and Find Full Text PDF