Integrating computational chemistry and toxicology can improve the read-across analog approach to fill data gaps in chemical safety assessment. In read-across, structure-related parameters are compared between a target chemical with insufficient test data and one or more materials with sufficient data. Recent advances have focused on enhancing the grouping or clustering of chemicals to facilitate toxicity prediction via read-across.
View Article and Find Full Text PDFEnviron Toxicol Chem
November 2022
Substances of unknown or variable composition, complex reaction products, and biological materials (UVCBs) pose a unique challenge to regulators and to product registrants, who are required to characterize their fate, exposure, hazard, and potential risks to human health and the environment. To address these challenges and ensure an efficient and fit-for-purpose process, it is proposed that the ecological risks of UVCBs be assessed following a tiered strategy. The development of this approach required exploring how substance composition ties into hazard and exposure information and determining the extent to which a UVCB needs to be characterized to ensure a robust risk assessment.
View Article and Find Full Text PDFSubstances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) pose unique risk assessment challenges to regulators and to product registrants. These substances can contain many constituents, sometimes partially unknown and/or variable, depending on fluctuations in their source material and/or manufacturing process. International regulatory agencies have highlighted the difficulties in characterizing UVCBs and assessing their toxicity and environmental fate.
View Article and Find Full Text PDFA valuable approach to chemical safety assessment is the use of read-across chemicals to provide safety data to support the assessment of structurally similar chemicals. An inventory of over 6000 discrete organic chemicals used as fragrance materials in consumer products has been clustered into chemical class-based groups for efficient search of read-across sources. We developed a robust, tiered system for chemical classification based on (1) organic functional group, (2) structural similarity and reactivity features of the hydrocarbon skeletons, (3) predicted or experimentally verified Phase I and Phase II metabolism, and (4) expert pruning to consider these variables in the context of specific toxicity end points.
View Article and Find Full Text PDFUrban rivers often function as sinks for various contaminants potentially placing the benthic communities at risk of exposure. We performed a comprehensive biological survey of the benthic macroinvertebrate and bacterial community compositions in six rivers from the suburb to the central urban area of Guangzhou city (South China), and evaluated their correlations with emerging organic contaminants, heavy metals and nutrients. Overall, the benthic macroinvertebrate community shifted from molluscs to oligochaete from the suburban to the central urban rivers that receive treated and untreated sewage.
View Article and Find Full Text PDFThe response of sediment bacterial communities in subtropical freshwater benthic microcosms to sediment-associated triclosan (TCS; 28 d exposure) was analysed using Illumina high-throughput sequencing. This study highlights the interactive effects of TCS and the presence of benthic macroinvertebrates (Limnodrilus hoffmeisteri and Viviparidae bellamya) on sediment bacterial communities. Our results show that TCS alone significantly altered the taxonomic composition and decreased alpha diversity of sediment bacterial communities at concentrations ≥80 μg TCS/g dry weight (dw) sediment (sed).
View Article and Find Full Text PDFGalaxolide (HHCB) is used as a fragrance ingredient in household and personal care products, and has been ubiquitously detected in the environment. Here we investigated the fate of HHCB in subtropical freshwater microcosms, and evaluated effects of sediment-associated HHCB on a biological community consisting of algae, Daphnia, benthic macroinvertebrates and bacteria. The concentrations of sediment-associated HHCB did not change significantly during a 28 days exposure period, but HHCB accumulated in worms with biota-sediment accumulation-factor (BSAF) values in the range of 0.
View Article and Find Full Text PDFTriclosan (TCS) is an antibacterial agent that is commonly used in personal care products. Because of its sediment-binding properties, TCS exposure presents a potential threat to sediment-dwelling aquatic organisms. Currently our knowledge of the fate and effects of sediment-associated TCS in aquatic systems is limited.
View Article and Find Full Text PDFPersonal care products are widely used in our daily life in considerable quantities and discharged via the down-the-drain route to aquatic environments, resulting in potential risks to aquatic organisms. We investigated bioaccumulation and biotransformation of two widely used personal care products, triclosan (TCS) and galaxolide (HHCB) spiked to sediment, in the oligochaete worm Limnodrilus hoffmeisteri in water/sediment microcosms. After 7 days of sediment exposure to 3.
View Article and Find Full Text PDFUnlabelled: Urban rivers may receive contamination from various sources including point sources like domestic sewage and nonpoint sources (e.g., runoff), resulting in contamination with various chemicals.
View Article and Find Full Text PDFOTNE [1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthyl)ethan-1-one; trade name Iso E Super] is a fragrance ingredient commonly used in consumer products which are disposed down the drain. This research measured effluent and sludge concentrations of OTNE at 44 US wastewater treatment plants (WWTP). The mean effluent and sludge concentrations were 0.
View Article and Find Full Text PDFFragrance materials, such as acetyl cedrene (AC), are of environmental concern because they are continuously released to aquatic systems down the drain. In the present study, Capitella teleta (formerly Capitella capitata species I) was exposed to AC-amended sediment at two population densities corresponding to 44,000 and 88,000 worms/m(2). The fate of AC in systems with worms was compared to that in identical systems without worms.
View Article and Find Full Text PDFA screening-level aquatic environmental risk assessment for macrocyclic fragrance materials using a "group approach" is presented using data for 30 macrocyclic fragrance ingredients. In this group approach, conservative estimates of environmental exposure and ecotoxicological effects thresholds for compounds within two subgroups (15 macrocyclic ketones and 15 macrocyclic lactones/lactides) were used to estimate the aquatic ecological risk potential for these subgroups. It is reasonable to separate these fragrance materials into the two subgroups based on the likely metabolic pathway required for biodegradation and on expected different ecotoxicological modes of action.
View Article and Find Full Text PDFIn the regulatory context, bioaccumulation assessment is often hampered by substantial data uncertainty as well as by the poorly understood differences often observed between results from laboratory and field bioaccumulation studies. Bioaccumulation is a complex, multifaceted process, which calls for accurate error analysis. Yet, attempts to quantify and compare propagation of error in bioaccumulation metrics across species and chemicals are rare.
View Article and Find Full Text PDFThe fate of the fragrance material, acetyl cedrene (AC), in sediment was examined in a 16 day laboratory experiment using the sediment microbial community subjected to the following treatments: AC (nominal concentration; 0 and 50 microg g(-1) dw sediment) and macrofaunal worms (with/without Capitella teleta (formerly Capitella sp. I)). Furthermore effects of AC on microbial respiration in the system were determined by examining CO(2) flux.
View Article and Find Full Text PDFA life table response experiment lasting 120 d was used to investigate the effects of the synthetic polycyclic musk HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8-hexamethylcyclopenta-gamma-2-benzopyrane; 0, 1.5, 26, 123, and 168 mg/kg dry wt sediment) on the life history of the infaunal polychaete Capitella species I. The HHCB exposure showed no detectable effects on adult survival, age at first reproduction, length of the reproductive period, number of broods, individual worm body volumes, or body size-specific egestion rates.
View Article and Find Full Text PDFAlthough the polycyclic musk 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[gamma]-2-benzopyran (HHCB) is frequently detected in aquatic sediments, very little is known about its effects on sediment-feeding organisms. Effects of sediment-associated HHCB on growth, feeding rate, survival and reproduction in the gastropod Potamopyrgus antipodarum were measured in the laboratory. Snails were exposed to six nominal HHCB concentrations: 0, 0.
View Article and Find Full Text PDFA possible removal mechanism for fragrance materials (FMs) in wastewater is adsorption to sludge, and sludge application to land may be a route through which FMs are released to the soil environment. However, little is known about the concentrations and fate of FMs in soil receiving sludge application. This study was conducted to better understand the dissipation of FMs in sludge-amended soils.
View Article and Find Full Text PDFEnviron Toxicol Chem
June 2002
More than 2,100 chemically defined organic chemicals are listed in the Research Institute of Fragrance Materials/Flavor and Extract Manufacturers' Association (RIFM/FEMA) Database that are used as ingredients of fragrances for consumer products. An approach was developed for prioritizing these fragrance materials for aquatic risk assessment by first estimating the predicted environmental concentration (PEC) of these fragrance materials in the aquatic environment based upon their physicochemical properties and annual volume of use. Subsequently, an effect level was predicted with a general quantitative structure-activity relationship (QSAR) for aquatic toxicity, and a predicted no-effect concentration (PNEC) was calculated from this effect level by using an assessment factor (AF) that accounts for uncertainty in the toxicity QSAR prediction.
View Article and Find Full Text PDF