Publications by authors named "Daniel Salib"

Driven quantum materials often feature emergent topology, otherwise absent in static crystals. Dynamic bulk-boundary correspondence, encoded by nondissipative gapless modes residing near the Floquet zone center and/or boundaries, is its most prominent example. Here we show that topologically robust gapless dispersive modes appear along the grain boundaries, embedded in the interior of Floquet topological crystals, when the Floquet-Bloch band inversion occurring at a finite momentum ( ) and the Burgers vector ( ) of the constituting array of dislocations satisfy (modulo ).

View Article and Find Full Text PDF

Topological lattice defects, such as dislocations and grain boundaries (GBs), are ubiquitously present in the bulk of quantum materials and externally tunable in metamaterials. In terms of robust modes, localized near the defect cores, they are instrumental in identifying topological crystals, featuring the hallmark band inversion at a finite momentum (translationally active type). Here we show that the GB superlattices in both two-dimensional and three-dimensional translationally active higher-order topological insulators harbor a myriad of dispersive modes that are typically placed at finite energies, but always well-separated from the bulk states.

View Article and Find Full Text PDF

Acetylene on Cu(111) is investigated by scanning tunnelling microscopy (STM); a surface pattern previously derived from diffraction measurements can be validated, if the variation of the STM image transfer function through absorption of an acetylene molecule onto the tip apex is taken into account. Density functional theory simulations point to a balance between short-range repulsive interactions of acetylene/Cu(111) associated with surface stress and longer range attractive interactions as the origin of the ordering.

View Article and Find Full Text PDF

3-phenyl-propynenitrile (PPN) adsorbs on Cu(111) in a hexagonal network of molecular trimers formed through intermolecular interaction of the cyano group of one molecule with the aromatic ring of its neighbor. Heptamers of trimers coalesce into interlocking pinwheel-shaped structures that, by percolating across islands of the original trimer coverage, create the appearance of gear chains. Density functional theory aids in identifying substrate stress associated with the chemisorption of PPN's acetylene group as the cause of this transition.

View Article and Find Full Text PDF