An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe three-dimensional organization of the genome in mammalian interphase nuclei is intrinsically linked to the regulation of gene expression. Whole chromosome territories and their encoded gene loci occupy preferential positions within the nucleus that changes according to the expression profile of a given cell lineage or stage. To further illuminate the relationship between chromosome organization, epigenetic environment, and gene expression, here we examine the functional organization of chromosome X and corresponding X-linked genes in a variety of healthy human and disease state X diploid (XX) cells.
View Article and Find Full Text PDFORAI1 is a pore subunit of the store-operated Ca(2+) release-activated Ca(2+) (CRAC) channel. To examine the physiological consequences of ORAI1 deficiency, we generated mice with targeted disruption of the Orai1 gene. The results of immunohistochemical analysis showed that ORAI1 is expressed in lymphocytes, skin, and muscle of wild-type mice and is not expressed in Orai1(-/-) mice.
View Article and Find Full Text PDFStimulation of immune cells triggers Ca2+ entry through store-operated Ca2+ release-activated Ca2+ channels, promoting nuclear translocation of the transcription factor NFAT. Through genome-wide RNA interference screens in Drosophila, we and others identified olf186-F (Drosophila Orai, dOrai) and dStim as critical components of store-operated Ca2+ entry and showed that dOrai and its human homologue Orai1 are pore subunits of the Ca2+ release-activated Ca2+ channel. Here we report that Orai1 is predominantly responsible for store-operated Ca2+ influx in human embryonic kidney 293 cells and human T cells and fibroblasts, although its paralogue Orai3 can partly compensate in the absence of functional Orai1.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2006
Ribosomal protein S1 is shown to interact with the non-coding RNA DsrA and with rpoS mRNA. DsrA is a non-coding RNA that is important in controlling expression of the rpoS gene product in Escherichia coli. Photochemical crosslinking, quadrupole-time of flight tandem mass spectrometry, and peptide sequencing have identified an interaction between DsrA and S1 in the 30S ribosomal subunit.
View Article and Find Full Text PDF