Forkhead box E1 (FoxE1) protein is a transcriptional regulator known to play a major role in the development of the thyroid gland. By performing sequence alignments, we detected a deletion in FoxE1, which occurred in the evolution of mammals, near the point of divergence of placental mammals. This deletion led to the loss of the majority of the Eh1 motif, which was important for interactions with transcriptional corepressors.
View Article and Find Full Text PDFIn the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a transcriptional switch mechanism mediated by FoxH1, the principle effector of Nodal autoregulation.
View Article and Find Full Text PDFSignaling inputs from multiple pathways are essential for the establishment of distinct cell and tissue types in the embryo. Therefore, multiple signals must be integrated to activate gene expression and confer cell fate, but little is known about how this occurs at the level of target gene promoters. During early embryogenesis, Wnt and Nodal signals are required for formation of the Spemann organizer, which is essential for germ layer patterning and axis formation.
View Article and Find Full Text PDFThe Spemann organizer is an essential signaling center in Xenopus germ layer patterning and axis formation. Organizer formation occurs in dorsal blastomeres receiving both maternal Wnt and zygotic Nodal signals. In response to stabilized βcatenin, dorsal blastomeres express the closely related transcriptional activators, Siamois (Sia) and Twin (Twn), members of the paired homeobox family.
View Article and Find Full Text PDFEstablishment of the embryonic mesoderm is dependent on integration of multiple signaling and transcriptional inputs. We report that the transcriptional regulator Foxd3 is essential for dorsal mesoderm formation in zebrafish, and that this function is dependent on the Nodal pathway. Foxd3 gain-of-function results in expanded dorsal mesodermal gene expression, including the Nodal-related gene cyclops, and body axis dorsalization.
View Article and Find Full Text PDFChromatin immunoprecipitation (ChIP) is a powerful method for analyzing the interaction of regulatory proteins with genomic loci, but has been difficult to apply to studies on early embryos due to the limiting amount of genomic material in these samples. Here, we present a comprehensive technique for performing ChIP on blastula and gastrula stage Xenopus embryos. We also describe methods for optimizing crosslinking and chromatin shearing, verifying antibody specificity, maximizing PCR sensitivity, and quantifying PCR results, allowing for the use of as few as 50 early blastula stage embryos (approximately 5x10(4) cells) per experimental condition.
View Article and Find Full Text PDFBackground: The Fox gene family comprises a large and functionally diverse group of forkhead-related transcriptional regulators, many of which are essential for metazoan embryogenesis and physiology. Defining conserved functional domains that mediate the transcriptional activity of Fox proteins will contribute to a comprehensive understanding of the biological function of Fox family genes.
Results: Systematic analysis of 458 protein sequences of the metazoan Fox family was performed to identify the presence of the engrailed homology-1 motif (eh1), a motif known to mediate physical interaction with transcriptional corepressors of the TLE/Groucho family.
FoxD3 is a forkhead-related transcriptional regulator that is essential for multiple developmental processes in the vertebrate embryo, including neural crest development and maintenance of mammalian stem cell lineages. Recent results demonstrate a requirement for FoxD3 in Xenopus mesodermal development. In the gastrula, FoxD3 functions as a transcriptional repressor in the Spemann organizer to maintain the expression of Nodal-related members of the transforming growth factor-beta superfamily that induce dorsal mesoderm formation.
View Article and Find Full Text PDFInduction and patterning of the mesodermal germ layer is a key early step of vertebrate embryogenesis. We report that FoxD3 function in the Xenopus gastrula is essential for dorsal mesodermal development and for Nodal expression in the Spemann organizer. In embryos and explants, FoxD3 induced mesodermal genes, convergent extension movements and differentiation of axial tissues.
View Article and Find Full Text PDFAlpha2-macroglobulin is a major serum protein with diverse functions, including inhibition of protease activity and binding of growth factors, cytokines, and disease factors. We have cloned and characterized Panza, a new Xenopus laevis alpha2-macroglobulin. Panza has 56-60% amino acid similarity with previously identified Xenopus, mouse, rat and human alpha2-macroglobulins, indicating that Panza is a new member of the alpha2-macroglobulin family.
View Article and Find Full Text PDFThe mesencephalic and metencephalic region (MMR) of the vertebrate central nervous system develops in response to signals produced by the isthmic organizer (IsO). We have previously reported that the LIM homeobox transcription factor Lmx1b is expressed within the chick IsO, where it is sufficient to maintain expression of the secreted factor wnt1. In this paper, we show that zebrafish express two Lmx1b orthologs, lmx1b.
View Article and Find Full Text PDFThe signaling activities of multiple developmental ligands require sulfated heparan sulfate (HS) proteoglycans as coreceptors. QSulf1 and its mammalian orthologs are cell surface HS 6-O-endosulfatases that are expressed in embryonic mesodermal and neural progenitors and promote Wnt signal transduction. In this study, we have investigated the function of QSulf1 in fibroblast growth factor (FGF) signaling, which requires 6-O-sulfated HS for FGF receptor (FGFR) dimerization and tyrosine kinase activation.
View Article and Find Full Text PDFCritical to our understanding of the developmental potential of stem cells and subsequent control of their differentiation in vitro and in vivo is a thorough understanding of the genes that control stem cell fate. Here, we report that Foxd3, a member of the forkhead family of transcriptional regulators, is required for maintenance of embryonic cells of the early mouse embryo. Foxd3-/- embryos die after implantation at approximately 6.
View Article and Find Full Text PDF