Publications by authors named "Daniel S Garrett"

RfaH is a two-domain transcription factor in which the C-terminal domain switches fold from an α-helical hairpin to a β-roll upon binding the -paused RNA polymerase. To ascertain the presence of a sparsely populated excited state that may prime the autoinhibited resting state of RfaH for binding -paused RNA polymerase, we carried out a series of NMR-based exchange experiments to probe for conformational exchange on the millisecond time scale. Quantitative analysis of these data reveals exchange between major ground (∼95%) and sparsely populated excited (∼5%) states with an exchange lifetime of ∼3 ms involving residues at the interface between the N-terminal and C-terminal domains formed by the β3/β4 hairpin and helix α3 of the N-terminal domain and helices α4 and α5 of the C-terminal domain.

View Article and Find Full Text PDF

Here we present the XIPP (eXtensible Interactive Peak Picker) NMR software for analyzing multidimensional NMR data of proteins, DNA, RNA and protein-nucleic acid complexes. XIPP organizes experiments into pre-defined studies and replaces our original PIPP software suite which is no longer supported. Default study types exist for backbone assignment, sidechain assignment, NOE assignment and several relaxation series experiments, used in solution NMR studies.

View Article and Find Full Text PDF

The Contour Approach to Peak Picking was developed to aid in the analysis and interpretation and of multidimensional NMR spectra of large biomolecules. In essence, it comprises an interactive graphics software tool to computationally select resonance positions in heteronuclear, 3- and 4D spectra.

View Article and Find Full Text PDF

The major rate-limiting step in high-throughput NMR protein structure determination involves the calculation of a reliable initial fold, the elimination of incorrect nuclear Overhauser enhancement (NOE) assignments, and the resolution of NOE assignment ambiguities. We present a robust approach to automatically calculate structures with a backbone coordinate accuracy of 1.0-1.

View Article and Find Full Text PDF