Background: Severe left-sided cardiac obstructions are associated with high morbidity and mortality if not detected in time. The correct prenatal diagnosis of coarctation of the aorta (CoA) is difficult. Fetal cardiac magnetic resonance imaging (CMR) may improve the prenatal diagnosis of complex congenital heart defects.
View Article and Find Full Text PDFDiagnosis and treatment of patients with suspected chronic coronary syndrome (CCS) currently relies on the degree of coronary artery stenosis and its significance for myocardial perfusion. However, myocardial perfusion can be affected by factors other than coronary stenosis. The aim of this study was to investigate to what extent sex, age, diabetes, hypertension and smoking affect quantitative myocardial perfusion, beyond the degree of coronary artery stenosis, in patients with suspected or established CCS.
View Article and Find Full Text PDFPurpose: To ultimately make accurate and precise fetal noninvasive oxygen saturation (sO ) measurements by T -prepared bSSFP more widely available by systematically assessing error sources in order to potentially reduce perinatal mortality in cardiovascular malformations and fetal growth restriction.
Methods: T -prepared bSSFP data were acquired in phantoms; in flowing blood in adults in the superior sagittal sinus, ascending and descending aorta, and main pulmonary artery; and in the fetal descending aorta and umbilical vein. T was assessed in relation to T two- or three-parameter curve-fitting techniques, SSFP readout, refocusing time delay (τ), constant and pulsatile blood flow, and impact of T recovery.
Aims: Mild hypothermia, 32-35°C, reduces infarct size in experimental studies, potentially mediating reperfusion injuries, but human trials have been ambiguous. To elucidate the cardioprotective mechanisms of mild hypothermia, we analysed cardiac performance in a porcine model of ischaemia/reperfusion, with serial cardiovascular magnetic resonance (CMR) imaging throughout 1 week using non-invasive pressure-volume (PV) loops.
Methods And Results: Normothermia and Hypothermia group sessions (n = 7 + 7 pigs, non-random allocation) were imaged with Cardiovascular magnetic resonance (CMR) at baseline and subjected to 40 min of normothermic ischaemia by catheter intervention.
Background: Although preterm birth predisposes for cardiovascular disease, recent studies in children indicate normal blood pressure and arterial stiffness. This prospective cohort study therefore assessed blood pressure and arterial stiffness in adolescents born very preterm due to verified fetal growth restriction (FGR).
Methods: Adolescents (14 (13-17) years; 52% girls) born very preterm with FGR (preterm FGR; n = 24) and two control groups born with appropriate birth weight (AGA), one in similar gestation (preterm AGA; n = 27) and one at term (term AGA; n = 28) were included.
Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by Hadlock's formulas to that of MRI; and (3) quantify fetal blood flow and index flow to fetal weight by MRI. Forty-two fetuses at 36 (29-39) weeks gestation underwent MRI.
View Article and Find Full Text PDFPurpose: To explore a fetal 3D cardiovascular cine acquisition using a radial image acquisition and compressed-sensing reconstruction and compare image quality and scan time with conventional multislice 2D imaging.
Methods: Volumetric fetal cardiac data were acquired in 26 volunteers using a radial 3D balanced SSFP pulse sequence. Cardiac gating was performed using a Doppler ultrasound device.
Background: Fetal cardiac magnetic resonance imaging (MRI) improves the diagnosis of congenital heart defects, but is sensitive to fetal motion due to long image acquisition time. This may be overcome with faster image acquisition with low resolution, followed by image enhancement to provide clinically useful images.
Purpose: To combine phase-encoding undersampling with super-resolution neural networks to achieve high-resolution fetal cine cardiac MR images with short acquisition time.
Importance: Prenatal diagnosis of complex congenital heart defects reduces mortality and morbidity in affected infants. However, fetal echocardiography can be limited by poor acoustic windows, and there is a need for improved diagnostic methods.
Objective: To assess the clinical utility of fetal cardiovascular magnetic resonance imaging in cases in which fetal echocardiography could not visualize all relevant anatomy.
Introduction: Fetal cardiovascular magnetic resonance (CMR) imaging is used clinically and for research, but has been previously limited due to lack of direct gating methods. A CMR-compatible Doppler ultrasound (DUS) gating device has resolved this. However, the DUS-gating method is not validated against the current reference method for fetal phase-contrast blood flow measurements, metric optimized gating (MOG).
View Article and Find Full Text PDFBackground: High reproducibility and low intra- and interobserver variability are important strengths of cardiac magnetic resonance (CMR). In clinical practice a significant learning curve may however be observed. Basic CMR courses offer an average of 1.
View Article and Find Full Text PDF