Publications by authors named "Daniel Rosner"

The well-being of children and young people has been affected by the COVID-19 pandemic. The shift to online education disrupted daily rhythms, transformed learning opportunities, and redefined social connections with peers and teachers. We here present a qualitative content analysis of responses to open-ended questions in a large-scale survey of teachers and students in Romania.

View Article and Find Full Text PDF

Stem cells (SCs) play a key role in homeostasis and repair. While many studies have focused on SC self-renewal and differentiation, little is known regarding the molecular mechanism regulating SC elimination and compensation upon loss. Here, we report that Caspase-9 deletion in hair follicle SCs (HFSCs) attenuates the apoptotic cascade, resulting in significant temporal delays.

View Article and Find Full Text PDF

Decoding the role of histone posttranslational modifications (PTMs) is key to understand the fundamental process of epigenetic regulation. This is well studied for PTMs of core histones but not for linker histone H1 in general and its ubiquitylation in particular due to a lack of proper tools. Here, we report on the chemical synthesis of site-specifically mono-ubiquitylated H1.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant pathogens is becoming increasingly problematic in the treatment of bacterial diseases. This has led to bacteriophages receiving increased attention as an alternative form of treatment. Phages are effective at targeting and killing bacterial strains of interest and have yielded encouraging results when administered as part of a tailored treatment to severely ill patients as a last resort.

View Article and Find Full Text PDF

Internet of Things (IoT) systems deployments are becoming both ubiquitous and business critical in numerous business verticals, both for process automation and data-driven decision-making based on distributed sensors networks. Beneath the simplicity offered by these solutions, we usually find complex, multi-layer architectures-from hardware sensors up to data analytics systems. These rely heavily on software running on the on-location gateway devices designed to bridge the communication between the sensors and the cloud.

View Article and Find Full Text PDF

Herein we describe a simple protocol for the efficient generation of site-specific ubiquitin-protein conjugates using click chemistry. By using two different methods to expand the genetic code, the two bio-orthogonal functionalities that are necessary for Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), an alkyne and an azide, are co-translationally incorporated into the proteins of interest with unnatural amino acids. Protein ubiquitylation is subsequently carried out with the purified proteins in vitro by CuAAC.

View Article and Find Full Text PDF

Ubiquitylation is a complex posttranslational protein modification and deregulation of this pathway has been associated with different human disorders. Ubiquitylation comes in different flavors: Besides mono-ubiquitylation, ubiquitin chains of various topologies are formed on substrate proteins. The fate of ubiquitylated proteins is determined by the linkage-type of the attached ubiquitin chains, however, the underlying mechanism is poorly characterized.

View Article and Find Full Text PDF

ADP-ribosyltransferases (ARTs) use NAD(+) as a substrate and play important roles in numerous biological processes, such as the DNA damage response and cell cycle regulation, by transferring multiple ADP-ribose units onto target proteins to form poly(ADP-ribose) (PAR) chains of variable sizes. Efforts to identify direct targets of PARylation, as well as the specific ADP-ribose acceptor sites, must all tackle the complexity of PAR. Herein, we report new NAD(+) analogues that are efficiently processed by wild-type ARTs and lead to chain termination owing to a lack of the required hydroxy group, thereby significantly reducing the complexity of the protein modification.

View Article and Find Full Text PDF

Posttranslational modification of proteins with ubiquitin (ubiquitylation) regulates numerous cellular processes. Besides functioning as a signal for proteasomal degradation, ubiquitylation has also non-proteolytic functions by altering the biochemical properties of the modified protein. To investigate the effect(s) of ubiquitylation on the properties of a protein, sufficient amounts of homogenously and well-defined ubiquitylated proteins are required.

View Article and Find Full Text PDF

A theory of aerosol coagulation rates resulting from continuum-regime brownian coagulation in the presence of size-dependent particle thermophoresis is developed and explored here. We are motivated by a wide variety of applications in which particle brownian coagulation occurs in a nonisothermal gas where differential thermophoretic drift contributes to, but does not dominate, the encounter frequency between suspended spherical particles (e.g.

View Article and Find Full Text PDF

A theory of aerosol coagulation due to size-dependent thermophoresis is presented. This previously overlooked effect is important when local temperature gradients are large, the sol population is composed of particles of much greater thermal conductivity than the carrier gas, with mean diameters much greater than the prevailing gas mean free path, and an adequate "spread" in sizes (as in metallurgical mists or fumes). We illustrate this via a population-balance analysis of the evolution of an initially log-normal distribution when this mechanism dominates ordinary Brownian diffusion.

View Article and Find Full Text PDF

We extendthe application of moment methods to multivariate suspended particle population problems-those for which size alone is insufficient to specify the state of a particle in the population. Specifically, a bivariate extension of the quadrature method of moments (QMOM) (R. McGraw, Aerosol Sci.

View Article and Find Full Text PDF