Publications by authors named "Daniel Romero-Mujalli"

Plasticity is found in all domains of life and is particularly relevant when populations experience variable environmental conditions. Traditionally, evolutionary models of plasticity are non-mechanistic: they typically view reactions norms as the target of selection, without considering the underlying genetics explicitly. Consequently, there have been difficulties in understanding the emergence of plasticity, and in explaining its limits and costs.

View Article and Find Full Text PDF

In human infants babbling is an important developmental stage of vocal plasticity to acquire maternal language. To investigate parallels in the vocal development of human infants and non-human mammals, seven key features of human babbling were defined, which are up to date only shown in bats and marmosets. This study will explore whether these features can also be found in gray mouse lemurs by investigating how infant vocal streams gradually resemble the structure of the adult trill call, which is not present at birth.

View Article and Find Full Text PDF

Bioacoustic analyses of animal vocalizations are predominantly accomplished through manual scanning, a highly subjective and time-consuming process. Thus, validated automated analyses are needed that are usable for a variety of animal species and easy to handle by non-programing specialists. This study tested and validated whether DeepSqueak, a user-friendly software, developed for rodent ultrasonic vocalizations, can be generalized to automate the detection/segmentation, clustering and classification of high-frequency/ultrasonic vocalizations of a primate species.

View Article and Find Full Text PDF

Populations adapt to novel environmental conditions by genetic changes or phenotypic plasticity. Plastic responses are generally faster and can buffer fitness losses under variable conditions. Plasticity is typically modeled as random noise and linear reaction norms that assume simple one-to-one genotype-phenotype maps and no limits to the phenotypic response.

View Article and Find Full Text PDF

Background: Edge effects can influence species composition and community structure as a result of changes in microenvironment and edaphic variables. We investigated effects of habitat edges on vegetation structure, abundance and body mass of one vulnerable Microcebus species in northwestern Madagascar. We trapped mouse lemurs along four 1000-m transects (total of 2424 trap nights) that ran perpendicular to the forest edge.

View Article and Find Full Text PDF

Background: Organisms are expected to respond to changing environmental conditions through local adaptation, range shift or local extinction. The process of local adaptation can occur by genetic changes or phenotypic plasticity, and becomes especially relevant when dispersal abilities or possibilities are somehow constrained. For genetic changes to occur, mutations are the ultimate source of variation and the mutation rate in terms of a mutator locus can be subject to evolutionary change.

View Article and Find Full Text PDF