Chemically propelled micropumps are promising wireless systems to autonomously drive fluid flows for many applications. However, many of these systems are activated by nocuous chemical fuels, cannot operate at high salt concentrations, or have difficulty for controlling flow directionality. In this work we report on a self-driven polymer micropump fueled by salt which can trigger both radial and unidirectional fluid flows.
View Article and Find Full Text PDFThe so-called geometric factor defined in electrokinetic cells, L/S (L being the length and S the cross-section of the channel), is relevant for providing the surface interaction electrical potential (zeta potential, ζ) of large surfaces, such as those used in the design of biomedical devices or water purification systems. Conversely, recent studies demonstrate that this factor is also employed to determine geometrical parameters, such as porosity in membrane-like systems. This factor, which has been attributed exclusively a geometrical character, can also be obtained from the electrical conductivity and resistance of the electrokinetic channel.
View Article and Find Full Text PDFNew biocompatible and bioabsorbable materials are currently being developed for bone regeneration. These serve as scaffolding for controlled drug release and prevent bacterial infections. Films of polylactic acid (PLA) polymers that are Mg-reinforced have demonstrated they have suitable properties and bioactive behavior for promoting the osseointegration process.
View Article and Find Full Text PDF