Publications by authors named "Daniel Roman"

Real-time detection of biomarkers, particularly nitric oxide (NO), is of utmost importance for critical healthcare monitoring, therapeutic dosing, and fundamental understanding of NO's role in regulating many physiological processes. However, detection of NO in a biological medium is challenging due to its short lifetime and low concentration. Here, we demonstrate for the first time that photonic microring resonators (MRRs) can provide real-time, direct, and detection of NO in a mouse wound model.

View Article and Find Full Text PDF

The ability to manipulate the electrophysiology of electrically active cells and tissues has enabled a deeper understanding of healthy and diseased tissue states. This has primarily been achieved via input/output (I/O) bioelectronics that interface engineered materials with biological entities. Stable long-term application of conventional I/O bioelectronics advances as materials and processing techniques develop.

View Article and Find Full Text PDF

The emergence of evidence-supported interventions allows hospitals the opportunity to reduce future reinjury among patients who are violently injured. However, hospital knowledge of these interventions and their perceived role in violence prevention is unknown. The Patient Protection and Affordable Care Act created new legal requirements for non-profit hospitals to conduct community health needs assessments (CHNA) every three years to maintain not-for-profit status.

View Article and Find Full Text PDF

Diabetes is a consequence of a decrease on functional β-cell mass. We have recently demonstrated that epoxypukalide (Epoxy) is a natural compound with beneficial effects on primary cultures of rat islets. In this study, we extend our previous investigations to test the hypothesis that Epoxy protects β-cells and improves glucose metabolism in STZ-induced diabetic mice.

View Article and Find Full Text PDF

The effects of bone morphogenetic protein (BMP) signaling on enteric neuron development were examined in transgenic mice overexpressing either the BMP inhibitor, noggin, or BMP4 under control of the neuron specific enolase (NSE) promoter. Noggin antagonism of BMP signaling increased total numbers of enteric neurons and those of subpopulations derived from precursors that exit the cell cycle early in neurogenesis (serotonin, calretinin, calbindin). In contrast, noggin overexpression decreased numbers of neurons derived from precursors that exit the cell cycle late (gamma-aminobutyric acid, tyrosine hydroxylase [TH], dopamine transporter, calcitonin gene-related peptide, TrkC).

View Article and Find Full Text PDF

The hypothesis that BMPs (bone morphogenetic proteins), which act early in gut morphogenesis, also regulate specification and differentiation in the developing enteric nervous system (ENS) was tested. Expression of BMP-2 and BMP-4, BMPR-IA (BMP receptor subunit), BMPR-IB, and BMPR-II, and the BMP antagonists, noggin, gremlin, chordin, and follistatin was found when neurons first appear in the primordial bowel at embryonic day 12 (E12). Agonists, receptors, and antagonists were detected in separated populations of neural crest- and noncrest-derived cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: