Publications by authors named "Daniel Rolland"

As an environmentally friendly approach for fruit quality improvement, the effect of preharvest UV-C on the physiology of strawberry fruit during postharvest storage remains to be assessed. Strawberry fruit developed with supplementary UV-C were stored at room temperature for 2 weeks. Preharvest UV-C attenuated fruit postharvest senescence and altered phytochemicals composition.

View Article and Find Full Text PDF

Ultraviolet-C (UV-C) radiation has been reported to induce defence responses to pathogens in growing crops and described as a new environmentally friendly method for disease control. However, whether the effect of the induced defence mechanisms will persist after the stress imposed by UV-C is alleviated and how these mechanisms interact with pathogen elicitors upon infection have not yet been investigated. Thus, we inoculated strawberry plants with Mycosphaerella fragariae, the causal agent of leaf spot disease, after 5 weeks of repeated UV-C irradiation treatment (cumulative dose of 10.

View Article and Find Full Text PDF

Recent studies presented preharvest ultraviolet C (UV-C) as an environmentally friendly approach for the management of horticultural crop diseases. The effect of this approach on quality preservation during postharvest storage has not yet been investigated. Strawberry fruit harvested from plants grown with supplemental UV-C were stored at room temperature for 72 h, and their postharvest shelf-life biochemical indicators were evaluated.

View Article and Find Full Text PDF

Preharvest ultraviolet C (UV-C) irradiation is an innovative approach for increasing the bioactive phytochemical content of strawberries to increase the disease resistance and nutritional value. This study investigated the changes in individual flavonoids in strawberry developed with three different cumulative doses of preharvest UV-C treatment (low, 9.6 kJ m; middle, 15 kJ m; and high , 29.

View Article and Find Full Text PDF

Recent studies have highlighted the biological and physiological effects of pre-harvest ultraviolet (UV)-C treatment on growing plants. However, little is known about the involvement of volatile organic compounds (VOCs) and their response to this treatment. In this study, strawberry plants were exposed to three different doses of UV-C radiation for seven weeks (a low dose: 9.

View Article and Find Full Text PDF

Preharvest ultraviolet-C (UV-C) treatment of strawberry is a very new approach, and little information is available on the effect of this treatment on plant growth regulators. In this study, the effect of preharvest UV-C irradiations at three different doses on strawberry yield, fruit quality parameters and endogenous phytohormones was investigated simultaneously. The overall marketable yield of strawberry was not affected by the preharvest UV-C treatments, although more aborted and misshapen fruits were found in UV-C treated groups than in the untreated control.

View Article and Find Full Text PDF

Postharvest ultraviolet-C (UV-C) hormesis has been shown effective for the treatment of the edible part of several horticultural crops such as strawberry fruit; however, there is a lack of information on its potential preharvest impact. In the present study three strawberry cultivars (Fragaria × ananassa Duch. 'Albion', 'Charlotte' and 'Seascape') were exposed to UV-C during two growth seasons for a period of three weeks.

View Article and Find Full Text PDF

Background: Ultraviolet-C (UV-C) has proven effective in extending shelf-life, reducing disease incidence and increasing the levels of health-promoting compounds in several crops. While most studies were conducted at the postharvest stage, our study examined the effect of preharvest UV-C application in three strawberry cultivars (Fragaria × ananassa Duch. 'Albion', 'Charlotte' and 'Seascape').

View Article and Find Full Text PDF