Ultrasonic inspection techniques and non-destructive tests are widely applied in evaluating products and equipment in the oil, petrochemical, steel, naval, and energy industries. These methods are well established and efficient for inspection procedures at room temperature. However, errors can be observed in the positioning and sizing of the flaws when such techniques are used during inspection procedures under high working temperatures.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2021
Ultrasonic imaging is a common technique in nondestructive evaluation, as it presents advantages such as low cost and safety of operation. In many industries, the interior inspection of objects with complex geometry has become a necessity. This kind of inspection requires the transducer to be coupled to the object with the use of some technique, such as immersing the object in water.
View Article and Find Full Text PDFThis paper presents an omnidirectional RGB-D (RGB + Distance fusion) sensor prototype using an actuated LIDAR (Light Detection and Ranging) and an RGB camera. Besides the sensor, a novel mapping strategy is developed considering sensor scanning characteristics. The sensor can gather RGB and 3D data from any direction by toppling in 90 degrees a laser scan sensor and rotating it about its central axis.
View Article and Find Full Text PDFModel-based image reconstruction has improved contrast and spatial resolution in imaging applications such as magnetic resonance imaging and emission computed tomography. However, these methods have not succeeded in pulse-echo applications like ultrasound imaging due to the typical assumption of a finite grid of possible scatterer locations in a medium⁻an assumption that does not reflect the continuous nature of real world objects and creates a problem known as off-grid deviation. To cope with this problem, we present a method of dictionary expansion and constrained reconstruction that approximates the continuous manifold of all possible scatterer locations within a region of interest.
View Article and Find Full Text PDFThis paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm.
View Article and Find Full Text PDFUltrasound imaging systems (UIS) are essential tools in nondestructive testing (NDT). In general, the quality of images depends on two factors: system hardware features and image reconstruction algorithms. This paper presents a new image reconstruction algorithm for ultrasonic NDT.
View Article and Find Full Text PDF