Publications by authors named "Daniel Rizzolo"

Background & Aims: Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid assimilation and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism.

View Article and Find Full Text PDF

Background: Vertical sleeve gastrectomy (SGx) is a type of bariatric surgery to treat morbid obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). The molecular mechanisms of SGx to improve MASLD are unclear, but increased bile acids (BAs) and FGF19 (mouse FGF15) were observed. FGF15/19 is expressed in the ileum in response to BAs and is critical in not only suppressing BA synthesis in the liver but also promoting energy expenditure.

View Article and Find Full Text PDF

Background And Aims: Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid esterification and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism.

View Article and Find Full Text PDF

Bile acids (BAs) serve as important signaling molecules and are endogenous ligands of nuclear and cell membrane receptors to regulate physiological and pathological processes. BA synthesis and metabolism have been impaired in NASH patients because of liver injury, inflammation or obstruction of bile ducts. On the other hand, the changes in BA composition might alter the activation status of various cell signaling pathways and contribute to NASH pathogenesis.

View Article and Find Full Text PDF

Bile acids (BAs) are amphipathic molecules important for metabolism of cholesterol, absorption of lipids and lipid soluble vitamins, bile flow, and regulation of gut microbiome. There are over 30 different BA species known to exist in humans and mice, which are endogenous modulators of at least 6 different membrane or nuclear receptors. This diversity of ligands and receptors play important roles in health and disease; however, the full functions of each individual BA remain unclear.

View Article and Find Full Text PDF

Fibroblast growth factors 15 (FGF15) and 19 (FGF19) are endocrine growth factors that play an important role in maintaining bile acid homeostasis. FGF15/19-based therapies are currently being tested in clinical trials for the treatment of nonalcoholic steatohepatitis and cholestatic liver diseases. To determine the physiologic impact of long-term elevations of FGF15/19, a transgenic mouse model with overexpression of ( Tg) was used in the current study.

View Article and Find Full Text PDF

Alcoholic fatty liver disease (AFLD) is one of the major causes of liver morbidity and mortality worldwide. We have previously shown that whole-body, but not hepatocyte-specific, deficiency of farnesoid X receptor (FXR) in mice worsens AFLD, suggesting that extrahepatic FXR deficiency is critical for AFLD development. Intestinal FXR is critical in suppressing hepatic bile acid (BA) synthesis by inducing fibroblast growth factor 15 (FGF15) in mice and FGF19 in humans.

View Article and Find Full Text PDF

Farnesoid X receptor (FXR) induces fibroblast growth factor 15 (FGF15; human ortholog FGF19) in the gut to potently inhibit bile acid (BA) synthesis in the liver. FXR activation in hepatic stellate cells (HSCs) reduces liver fibrosis (LF). Fgf15 mice develop attenuated LF, but the underlying mechanisms for this protection are unclear.

View Article and Find Full Text PDF

Bile acids (BAs) are diverse molecules that are synthesized from cholesterol in the liver. The synthesis of BAs has traditionally been shown to occur through two pathways. Cholesterol 7α-hydroxylase (CYP7A1) performs the initial and rate-limiting step in the classical pathway, and sterol 27-hydroxylase (CYP27A1) initiates the hydroxylation of cholesterol in the alternative pathway.

View Article and Find Full Text PDF

Emerging evidence has shown that FXR activation ameliorates the development of alcoholic liver diseases (ALD) while whole-body deficiency of FXR in mice leads to more severe ALD. However, it's unknown whether the enhanced susceptibility to ALD development in FXR mice is due to deficiency of hepatic FXR or increased toxicity secondary to increased bile acid (BA) levels. Hepatocyte-specific FXR knockout mice (FXR) present similar BA levels compared to wild-type mice, and are therefore a useful model to study a direct role of hepatic FXR in ALD development.

View Article and Find Full Text PDF

Hydrocarbon-inducible cytochrome P4501A (CYP1A) expression was measured, as ethoxyresorufin-O-deethylase (EROD) activity, in livers of wintering harlequin ducks (Histrionicus histrionicus) captured in areas of Prince William Sound, Alaska, USA, oiled by the 1989 Exxon Valdez spill and in birds from nearby unoiled areas, during 2005 to 2009 (up to 20 years following the spill). The present work repeated studies conducted in 1998 that demonstrated that in harlequin ducks using areas that received Exxon Valdez oil, EROD activity was elevated nearly a decade after the spill. The present findings strongly supported the conclusion that average levels of hepatic EROD activity were higher in ducks from oiled areas than those from unoiled areas during 2005 to 2009.

View Article and Find Full Text PDF

Twenty-eight Harlequin Ducks (Histrionicus histrionicus) and 26 Barrow's Goldeneyes (Bucephala islandica) were captured in Prince William Sound, Alaska, between 1 and 15 March 2005. Blood was collected for quantification of element concentrations, prevalence of antibodies to several viruses, and hemoparasite prevalence and identification. Although we found selenium concentrations that have been associated with selenosis in some birds (>or=2.

View Article and Find Full Text PDF

Little is known about baseline concentrations of adrenal hormones and hormonal responses to stress in sea ducks, although significant population declines documented in several species suggest that sea ducks are exposed to increased levels of environmental stress. Such declines have been observed in geographically distinct harlequin duck populations. We performed an adrenocorticotropic hormone (ACTH) challenge to evaluate adrenal function and characterize corticosterone concentrations in captive harlequin ducks and investigated the effects of capture, surgery, and short term confinement on corticosterone concentrations in wild harlequin ducks.

View Article and Find Full Text PDF