Publications by authors named "Daniel Rizzo"

Surface plasmon polaritons (SPPs) provide a window into the nano-optical, electrodynamic response of their host material and its dielectric environment. Graphene/α-RuCl serves as an ideal model system for imaging SPPs since the large work function difference between these two layers facilitates charge transfer that hole dopes graphene with ∼ 10 cm free carriers. In this work, we study the emergent THz response of graphene/α-RuCl heterostructures using our home-built cryogenic scanning near-field optical microscope.

View Article and Find Full Text PDF

The integration time and signal-to-noise ratio are inextricably linked when performing scanning probe microscopy based on raster scanning. This often yields a large lower bound on the measurement time, for example, in nano-optical imaging experiments performed using a scanning near-field optical microscope (SNOM). Here, we utilize sparse scanning augmented with Gaussian process regression to bypass the time constraint.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the use of work-function-mediated charge transfer for controlling the electrostatics of individual atomic layers, using α-RuCl as a 2D electron acceptor next to hexagonal boron nitride (BN).
  • It highlights how this arrangement induces unique nano-optical behavior in BN by causing interlayer charge polarization, resulting in a reduction of phonon polariton (PhP) propagation length significantly beyond intrinsic losses.
  • The findings are backed by advanced techniques like scattering-type scanning near-field optical microscopy and first-principles calculations, demonstrating the promising applications of charge-transfer heterostructures in enhancing the optoelectronic properties of 2D insulators.
View Article and Find Full Text PDF

The two natural allotropes of carbon, diamond and graphite, are extended networks of sp-hybridized and sp-hybridized atoms, respectively. By mixing different hybridizations and geometries of carbon, one could conceptually construct countless synthetic allotropes. Here we introduce graphullerene, a two-dimensional crystalline polymer of C that bridges the gulf between molecular and extended carbon materials.

View Article and Find Full Text PDF

Polaritons in hyperbolic van der Waals materials-where principal axes have permittivities of opposite signs-are light-matter modes with unique properties and promising applications. Isofrequency contours of hyperbolic polaritons may undergo topological transitions from open hyperbolas to closed ellipse-like curves, prompting an abrupt change in physical properties. Electronically-tunable topological transitions are especially desirable for future integrated technologies but have yet to be demonstrated.

View Article and Find Full Text PDF

2D materials can host long-range magnetic order in the presence of underlying magnetic anisotropy. The ability to realize the full potential of 2D magnets necessitates systematic investigation of the role of individual atomic layers and nanoscale inhomogeneity (i.e.

View Article and Find Full Text PDF

The ability to create nanometer-scale lateral p-n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl, we realize nanoscale lateral p-n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p-n junctions.

View Article and Find Full Text PDF

The incorporation of nonhexagonal rings into graphene nanoribbons (GNRs) is an effective strategy for engineering localized electronic states, bandgaps, and magnetic properties. Here, we demonstrate the successful synthesis of nanoribbons having four-membered ring (cyclobutadienoid) linkages by using an on-surface synthesis approach involving direct contact transfer of coronene-type precursors followed by thermally assisted [2 + 2] cycloaddition. The resulting coronene-cyclobutadienoid nanoribbons feature a narrow 600-meV bandgap and novel electronic frontier states that can be interpreted as linear chains of effective p and p pseudo-atomic orbitals.

View Article and Find Full Text PDF

Bottom-up graphene nanoribbons (GNRs) have recently been shown to host nontrivial topological phases. Here, we report the fabrication and characterization of deterministic GNR quantum dots whose orbital character is defined by zero-mode states arising from nontrivial topological interfaces. Topological control was achieved through the synthesis and on-surface assembly of three distinct molecular precursors designed to exhibit structurally derived topological electronic states.

View Article and Find Full Text PDF
Article Synopsis
  • Deep learning (DL) is increasingly used in scientific and engineering fields, particularly for analyzing large imaging data sets.
  • The researchers applied a convolutional neural network (CNN) to analyze nanoscale images of polaritonic waves, creating a method to quickly quantify wavelengths and quality factors.
  • Their CNN-based protocol significantly speeds up data processing—at least 1,000 times faster than traditional methods—and has been validated using experimental images from specific material interfaces.
View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a hybrid bottom-up synthesis technique called Matrix-Assisted Direct (MAD) transfer for creating graphene nanoribbons (GNRs) that combines the advantages of solution-based and on-surface approaches.
  • This method allows for precise control over critical structural properties, translating them effectively into the resulting GNRs.
  • The research showcases the synthesis of unique structures such as chevron-type GNRs and nitrogen-doped armchair GNRs, which could not be achieved using conventional synthesis methods alone.
View Article and Find Full Text PDF

Nanoscale charge control is a key enabling technology in plasmonics, electronic band structure engineering, and the topology of two-dimensional materials. By exploiting the large electron affinity of α-RuCl, we are able to visualize and quantify massive charge transfer at graphene/α-RuCl interfaces through generation of charge-transfer plasmon polaritons (CPPs). We performed nanoimaging experiments on graphene/α-RuCl at both ambient and cryogenic temperatures and discovered robust plasmonic features in otherwise ungated and undoped structures.

View Article and Find Full Text PDF

The design and fabrication of robust metallic states in graphene nanoribbons (GNRs) are challenging because lateral quantum confinement and many-electron interactions induce electronic band gaps when graphene is patterned at nanometer length scales. Recent developments in bottom-up synthesis have enabled the design and characterization of atomically precise GNRs, but strategies for realizing GNR metallicity have been elusive. Here we demonstrate a general technique for inducing metallicity in GNRs by inserting a symmetric superlattice of zero-energy modes into otherwise semiconducting GNRs.

View Article and Find Full Text PDF

The incorporation of nanoscale pores into a sheet of graphene allows it to switch from an impermeable semimetal to a semiconducting nanosieve. Nanoporous graphenes are desirable for applications ranging from high-performance semiconductor device channels to atomically thin molecular sieve membranes, and their performance is highly dependent on the periodicity and reproducibility of pores at the atomic level. Achieving precise nanopore topologies in graphene using top-down lithographic approaches has proven to be challenging due to poor structural control at the atomic level.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are molecule-based 2D and 3D materials that possess a wide range of mechanical and electronic properties. We have performed a joint experimental and theoretical study of the electronic structure of boroxine-linked COFs grown under ultrahigh vacuum conditions and characterized using scanning tunneling spectroscopy on Au(111) and hBN/Cu(111) substrates. Our results show that a single hBN layer electronically decouples the COF from the metallic substrate, thus suppressing substrate-induced broadening and revealing new features in the COF electronic local density of states (LDOS).

View Article and Find Full Text PDF

The ability to tune the band-edge energies of bottom-up graphene nanoribbons (GNRs) via edge dopants creates new opportunities for designing tailor-made GNR heterojunctions and related nanoscale electronic devices. Here we report the local electronic characterization of type II GNR heterojunctions composed of two different nitrogen edge-doping configurations (carbazole and phenanthridine) that separately exhibit electron-donating and electron-withdrawing behavior. Atomically resolved structural characterization of phenanthridine/carbazole GNR heterojunctions was performed using bond-resolved scanning tunneling microscopy and noncontact atomic force microscopy.

View Article and Find Full Text PDF

Geometrical cues play an essential role in neuronal growth. Here, we quantify axonal growth on surfaces with controlled geometries and report a general stochastic approach that quantitatively describes the motion of growth cones. We show that axons display a strong directional alignment on micropatterned surfaces when the periodicity of the patterns matches the dimension of the growth cone.

View Article and Find Full Text PDF

Topological insulators are an emerging class of materials that host highly robust in-gap surface or interface states while maintaining an insulating bulk. Most advances in this field have focused on topological insulators and related topological crystalline insulators in two dimensions and three dimensions, but more recent theoretical work has predicted the existence of one-dimensional symmetry-protected topological phases in graphene nanoribbons (GNRs). The topological phase of these laterally confined, semiconducting strips of graphene is determined by their width, edge shape and terminating crystallographic unit cell and is characterized by a [Formula: see text] invariant (that is, an index of either 0 or 1, indicating two topological classes-similar to quasi-one-dimensional solitonic systems).

View Article and Find Full Text PDF

Bottom-up fabrication techniques enable atomically precise integration of dopant atoms into the structure of graphene nanoribbons (GNRs). Such dopants exhibit perfect alignment within GNRs and behave differently from bulk semiconductor dopants. The effect of dopant concentration on the electronic structure of GNRs, however, remains unclear despite its importance in future electronics applications.

View Article and Find Full Text PDF

Bottom-up graphene nanoribbon (GNR) heterojunctions are nanoscale strips of graphene whose electronic structure abruptly changes across a covalently bonded interface. Their rational design offers opportunities for profound technological advancements enabled by their extraordinary structural and electronic properties. Thus far, the most critical aspect of their synthesis, the control over sequence and position of heterojunctions along the length of a ribbon, has been plagued by randomness in monomer sequences emerging from step-growth copolymerization of distinct monomers.

View Article and Find Full Text PDF

The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor.

View Article and Find Full Text PDF

Atomically precise engineering of defined segments within individual graphene nanoribbons (GNRs) represents a key enabling technology for the development of advanced functional device architectures. Here, the bottom-up synthesis of chevron GNRs decorated with reactive functional groups derived from 9-methyl-9H-carbazole is reported. Scanning tunneling and non-contact atomic force microscopy reveal that a thermal activation of GNRs induces the rearrangement of the electron-rich carbazole into an electron-deficient phenanthridine.

View Article and Find Full Text PDF

A fundamental requirement for the development of advanced electronic device architectures based on graphene nanoribbon (GNR) technology is the ability to modulate the band structure and charge carrier concentration by substituting specific carbon atoms in the hexagonal graphene lattice with p- or n-type dopant heteroatoms. Here we report the atomically precise introduction of group III dopant atoms into bottom-up fabricated semiconducting armchair GNRs (AGNRs). Trigonal-planar B atoms along the backbone of the GNR share an empty p-orbital with the extended π-band for dopant functionality.

View Article and Find Full Text PDF

Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation.

View Article and Find Full Text PDF

Bioengineered spider silk block copolymers were studied to understand the effect of protein chain length and sequence chemistry on the formation of secondary structure and materials assembly. Using a combination of in vitro protein design and assembly studies, we demonstrate that silk block copolymers possessing multiple repetitive units self-assemble into lamellar microstructures. Additionally, the study provides insights into the assembly behavior of spider silk block copolymers in concentrated salt solutions.

View Article and Find Full Text PDF