Trichloroacetimidates are useful reagents for the synthesis of esters under mild conditions that do not require an exogenous promoter. These conditions avoid the undesired decomposition of substrates with sensitive functional groups that are often observed with the use of strong Lewis or Brønsted acids. With heating, these reactions have been extended to benzyl esters without electron-donating groups.
View Article and Find Full Text PDFAn intermolecular alkylation of sulfonamides with trichloroacetimidates is reported. This transformation does not require an exogenous acid, base, or transition metal catalyst; instead the addition occurs in refluxing toluene without additives. The sulfonamide alkylation partner appears to be only limited by sterics, with unsubstituted sulfonamides providing better yields than more encumbered N-alkyl sulfonamides.
View Article and Find Full Text PDFRecently, inhibition of the SH2-containing inositol 5'-phosphatase 1 (SHIP1) has become an attractive strategy for facilitating engraftment of MHC-I mismatched bone marrow grafts, increasing the number of adult stem cells in vivo, and inducing mobilization of hematopoietic stem cells. Utilizing high-throughput screening, two quinoline small molecules (NSC13480 and NSC305787) that inhibit SHIP1 enzymatic activity were discovered. New syntheses of these inhibitors have been developed which verified the relative stereochemistry of these structures.
View Article and Find Full Text PDFTrichloroacetimidates are useful alkylating agents for aromatic amines, requiring only a catalytic amount of a Brønsted acid to facilitate the reaction. Monoalkylation predominates under these conditions. Electron-poor anilines provide superior yields, with electron-rich anilines sometimes showing competitive Friedel-Crafts alkylation.
View Article and Find Full Text PDF