Cystic fibrosis (CF) is an autosomal recessive genetic disorder resulting from defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which in turn results in a multi-systemic disorder. There are numerous known CF alleles associated with different mutations of the CFTR gene, with the most common CF allele being a three-base-pair deletion known as ΔF508. One common manifestation of CF is glycemic dysregulation associated with decreased insulin secretion, often progressing into a distinct form of diabetes known as cystic fibrosis-related diabetes (CFRD).
View Article and Find Full Text PDFA large body of research has examined the behavioral and mental health consequences of polymorphisms in genes of the dopaminergic and serotonergic systems. Along with this, there has been considerable interest in the possibility that these polymorphisms have developed and/or been maintained due to the action of natural selection. Episodes of natural selection on a gene are expected to leave molecular "footprints" in the DNA sequences of the gene and adjacent genomic regions.
View Article and Find Full Text PDFReproduction is an important life history trait that strongly affects dynamics of plant populations. Although it has been well documented that elevated carbon dioxide (CO2) in the atmosphere greatly enhances biomass production in plants, the overall effect of elevated CO2 on reproductive allocation (RA), i.e.
View Article and Find Full Text PDFRising atmospheric CO(2) greatly enhances plant production, but its effect on biomass allocation, particularly in the presence of environmental stresses, is not well understood. Here, we used meta-analysis combined with pairwise techniques to examine root mass fraction (RMF; i.e.
View Article and Find Full Text PDFPlants grown under elevated atmospheric [CO2] typically have decreased tissue concentrations of N compared with plants grown under current ambient [CO2]. The physiological mechanisms responsible for this phenomenon have not been definitely established, although a considerable number of hypotheses have been advanced to account for it. In this review we discuss and critically evaluate these hypotheses.
View Article and Find Full Text PDFDetermining the relative contributions of genetic and environmental factors to phenotypic variation is critical for understanding the evolutionary ecology of plant species, but few studies have examined the sources of phenotypic differentiation between nearby populations of woody plants. We conducted reciprocal transplant experiments to examine sources of variation in growth rate, form, survival, and maturation in a globally rare dwarf population of pitch pine (Pinus rigida) and in surrounding populations of normal-stature pitch pines on Long Island, New York. Transplants were monitored over a 6-yr period.
View Article and Find Full Text PDF