Spinocerebellar ataxia type 7 (SCA7) is a genetic neurodegenerative disorder caused by a CAG-polyglutamine repeat expansion. Purkinje cells (PCs) are central to the pathology of ataxias, but their low abundance in the cerebellum underrepresents their transcriptomes in sequencing assays. To address this issue, we developed a PC enrichment protocol and sequenced individual nuclei from mice and patients with SCA7.
View Article and Find Full Text PDFFront Mol Neurosci
July 2024
The cGAS-STING innate immunity pathway and the SREBP-activated cholesterol and fatty acid synthesis pathway are abnormally co-regulated in neurodegenerative disease. Activation of STING signaling occurs at the endoplasmic reticulum (ER) membrane with STING anchored by INSIG1 along with SREBP and the sterol-bound SREBP cleavage activating protein (SCAP) when sterols are in abundance. When sterols are low, the INSIG-dependent STING pathway is inactivated and the SREBP-SCAP complex is translocated to the Golgi where SREBP is cleaved and translocated to the nucleus to transactivate genes for cholesterol and fatty acid synthesis.
View Article and Find Full Text PDFBackground And Objectives: Micro-RNAs (miRNAs) are critical for regulating the expression of genes in multiple neurodegenerative diseases, but miRNAs have not been investigated in spinocerebellar ataxia type 2 (SCA2). SCA2, a dominantly inherited progressive neurodegenerative polyglutamine (polyQ) disease, is caused by a CAG repeat expansion in the ataxin-2 () gene. In this study, we determined miRNA transcriptomes in SCA2-BAC- transgenic mice.
View Article and Find Full Text PDFDespite linkage to chromosome 16q in 1996, the mutation causing spinocerebellar ataxia type 4 (SCA4), a late-onset sensory and cerebellar ataxia, remained unknown. Here, using long-read single-strand whole-genome sequencing (LR-GS), we identified a heterozygous GGC-repeat expansion in a large Utah pedigree encoding polyglycine (polyG) in zinc finger homeobox protein 3 (ZFHX3), also known as AT-binding transcription factor 1 (ATBF1). We queried 6,495 genome sequencing datasets and identified the repeat expansion in seven additional pedigrees.
View Article and Find Full Text PDFSpinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disorder caused by a CAG-polyglutamine repeat expansion. SCA7 patients display a striking loss of Purkinje cell (PC) neurons with disease progression; however, PCs are rare, making them difficult to characterize. We developed a PC nuclei enrichment protocol and applied it to single-nucleus RNA-seq of a SCA7 knock-in mouse model.
View Article and Find Full Text PDFThe double-stranded RNA-binding protein, STAU1 (staufen double-stranded RNA binding protein 1) is a multifunctional protein that localizes to stress granules (SGs). We had previously found that STAU1 is overabundant in fibroblast cell lines from patients with spinocerebellar ataxia type 2 (SCA2) or amyotrophic lateral sclerosis (ALS)-frontotemporal dementia (FTD) as well as in animal models of these diseases. STAU1 overabundance is post-transcriptional and associated with MTOR hyperactivation and links SG formation with macroautophagy/autophagy.
View Article and Find Full Text PDFThe shaker rat carries a naturally occurring mutation leading to progressive ataxia characterized by Purkinje cell (PC) loss. We previously reported on fine-mapping the shaker locus to the long arm of the rat X chromosome. In this work, we sought to identify the mutated gene underlying the shaker phenotype and confirm its identity by functional complementation.
View Article and Find Full Text PDFObjective: The mechanistic target of rapamycin (mTOR) kinase is one of the master coordinators of cellular stress responses, regulating metabolism, autophagy, and apoptosis. We recently reported that staufen1 (STAU1), a stress granule (SG) protein, was overabundant in fibroblast cell lines from patients with spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis, frontotemporal degeneration, Huntington's, Alzheimer's, and Parkinson's diseases as well as animal models, and patient tissues. STAU1 overabundance is associated with mTOR hyperactivation and links SG formation with autophagy.
View Article and Find Full Text PDFCAG repeat expansions in the ATXN2 (ataxin-2) gene can cause the autosomal dominant disorder spinocerebellar ataxia type 2 (SCA2) as well as increase the risk of ALS. Abnormal molecular, motor, and neurophysiological phenotypes in SCA2 mouse models are normalized by lowering ATXN2 transcription, and reduction of nonmutant Atxn2 expression has been shown to increase the life span of mice overexpressing the TDP-43 (transactive response DNA-binding protein 43 kDa) ALS protein, demonstrating the potential benefits of targeting ATXN2 transcription in humans. Here, we describe a quantitative high-throughput screen to identify compounds that lower ATXN2 transcription.
View Article and Find Full Text PDFAccumulation of α-synuclein is a main underlying pathological feature of Parkinson's disease and α-synucleinopathies, for which lowering expression of the α-synuclein gene (SNCA) is a potential therapeutic avenue. Using a cell-based luciferase reporter of SNCA expression we performed a quantitative high-throughput screen of 155,885 compounds and identified A-443654, an inhibitor of the multiple functional kinase AKT, as a potent inhibitor of SNCA. HEK-293 cells with CAG repeat expanded ATXN2 (ATXN2-Q58 cells) have increased levels of α-synuclein.
View Article and Find Full Text PDFPolyglutamine repeat expansions in the Ataxin-2 (ATXN2) gene were first implicated in Spinocerebellar Ataxia Type 2, a disease associated with degeneration of motor neurons and Purkinje cells. Recent studies linked single nucleotide polymorphisms in the gene to elevated intraocular pressure in primary open angle glaucoma (POAG); yet, the localization of ATXN2 across glaucoma-relevant tissues of the vertebrate eye has not been thoroughly examined. This study characterizes ATXN2 expression in the mouse and human retina, and anterior eye, using an antibody validated in ATXN2 retinas.
View Article and Find Full Text PDFObjective: Mutations in the ATXN2 gene (CAG expansions ≥32 repeats) can be a rare cause of Parkinson's disease and amyotrophic lateral sclerosis (ALS). We recently reported that the stress granule (SG) protein Staufen1 (STAU1) was overabundant in neurodegenerative disorder spinocerebellar ataxia type 2 (SCA2) patient cells, animal models, and ALS-TDP-43 fibroblasts, and provided a link between SG formation and autophagy. We aimed to test if STAU1 overabundance has a role in the pathogenesis of other neurodegenerative diseases.
View Article and Find Full Text PDFIn this issue of Neuron, Chai et al. (2021) analyze several families with neurodegeneration and marked pontocerebellar hypoplasia and microcephaly and identify recessive (bi-allelic) mutations in peptidyl-prolyl isomerase-like 1 (PPIL1) and pre-RNA-processing-17 (PPR17). PPIL1 patient mutation knockin mice develop neuronal apoptosis.
View Article and Find Full Text PDFSelective neuronal vulnerability in neurodegenerative disease is poorly understood. Using the ATXN1[82Q] model of spinocerebellar ataxia type 1 (SCA1), we explored the hypothesis that regional differences in Purkinje neuron degeneration could provide novel insights into selective vulnerability. ATXN1[82Q] Purkinje neurons from the anterior cerebellum were found to degenerate earlier than those from the nodular zone, and this early degeneration was associated with selective dysregulation of ion channel transcripts and altered Purkinje neuron spiking.
View Article and Find Full Text PDFStaufen-1 (STAU1) is an RNA-binding protein that becomes highly overabundant in numerous neurodegenerative disease models, including those carrying mutations in presenilin1 (PSEN1), microtubule-associated protein tau (MAPT), huntingtin (HTT), TAR DNA-binding protein-43 gene (TARDBP), or C9orf72. We previously reported that elevations in STAU1 determine autophagy defects and its knockdown is protective in models of several neurodegenerative diseases. Additional functional consequences of STAU1 overabundance, however, have not been investigated.
View Article and Find Full Text PDFThe spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase ALS risk. Also, lowering ATXN2 expression in TDP-43 ALS mice prolongs their survival.
View Article and Find Full Text PDFCurrently, few disease-modifying therapies exist for degenerative movement disorders. Antisense oligonucleotides are small DNA oligonucleotides, usually encompassing ∼20 base pairs, that can potentially target any messenger RNA of interest. Antisense oligonucleotides often contain modifications to the phosphate backbone, the sugar moiety, and the nucleotide base.
View Article and Find Full Text PDFThere are few disease-modifying therapeutics for neurodegenerative diseases, but successes on the development of antisense oligonucleotide (ASO) therapeutics for spinal muscular atrophy and Duchenne muscular dystrophy predict a robust future for ASOs in medicine. Indeed, existing pipelines for the development of ASO therapies for spinocerebellar ataxias, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, Parkinson disease, and others, and increased focus by the pharmaceutical industry on ASO development, strengthen the outlook for using ASOs for neurodegenerative diseases. Perhaps the most significant advantage to ASO therapeutics over other small molecule approaches is that acquisition of the target sequence provides immediate knowledge of putative complementary oligonucleotide therapeutics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
The genetically heterogeneous spinocerebellar ataxias (SCAs) are caused by Purkinje neuron dysfunction and degeneration, but their underlying pathological mechanisms remain elusive. The Src family of nonreceptor tyrosine kinases (SFK) are essential for nervous system homeostasis and are increasingly implicated in degenerative disease. Here we reveal that the SFK suppressor Missing-in-metastasis (MTSS1) is an ataxia locus that links multiple SCAs.
View Article and Find Full Text PDFSpinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by expansion of polyglutamine tract in the ATXN2 protein. We identified Staufen1 (STAU1) as an interactor of ATXN2, and showed elevation in cells from SCA2 patients, amyotrophic lateral sclerosis (ALS) patients, and in SCA2 mouse models. We demonstrated recruitment of STAU1 to mutant ATXN2 aggregates in brain tissue from patients with SCA2 human brain and in an SCA2 mouse model, and association of STAU1 elevation with dysregulation of SCA2-related transcript abundances.
View Article and Find Full Text PDFTherapeutics that directly target RNAs are promising for a broad spectrum of disorders, including the neurodegenerative diseases. This is exemplified by the FDA approval of Nusinersen, an antisense oligonucleotide (ASO) therapeutic for spinal muscular atrophy (SMA). RNA targeting therapeutics are currently under development for amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias.
View Article and Find Full Text PDFSpinocerebellar ataxia type 2 (SCA2) is autosomal dominantly inherited and caused by CAG repeat expansion in the ATXN2 gene. Because the CAG repeat expansion is localized to an encoded region of ATXN2, the result is an expanded polyglutamine (polyQ) tract in the ATXN2 protein. SCA2 is characterized by progressive ataxia, and slow saccades.
View Article and Find Full Text PDFProtein misfolding and aggregation is a pathogenic feature shared among at least ten polyglutamine (polyQ) neurodegenerative diseases. While solvent-solution interaction is a key factor driving protein folding and aggregation, the solvation properties of expanded polyQ tracts are not well understood. By using GPU-enabled all-atom molecular dynamics simulations of polyQ monomers in an explicit solvent environment, this study shows that solvent-polyQ interaction propensity decreases as the lengths of polyQ tract increases.
View Article and Find Full Text PDF