Background: Target identification and hit identification can be transformed through the application of biomedical knowledge analysis, AI-driven virtual screening and robotic cloud lab systems. However there are few prospective studies that evaluate the efficacy of such integrated approaches.
Results: We synergistically integrate our in-house-developed target evaluation (SpectraView) and deep-learning-driven virtual screening (HydraScreen) tools with an automated robotic cloud lab designed explicitly for ultra-high-throughput screening, enabling us to validate these platforms experimentally.
The development of cloning vectors for green fluorescent protein (GFP) and the simplicity of yeast reverse genetics allow straightforward labeling of yeast proteins in living cells. Budding and fission yeast are therefore attractive organisms in which to study dynamic cellular processes such as growth, cell division, and morphogenesis using live cell fluorescence microscopy. This article focuses on methods to culture, mount, and observe budding yeast cells using three-dimensional (3D) microscopy, but the methods are broadly applicable to other types of cells and other imaging techniques.
View Article and Find Full Text PDFMany proteins or other biological macromolecules are localized to more than one subcellular structure. The fraction of a protein in different cellular compartments is often measured by colocalization with organelle-specific fluorescent markers, requiring availability of fluorescent probes for each compartment and acquisition of images for each in conjunction with the macromolecule of interest. Alternatively, tailored algorithms allow finding particular regions in images and quantifying the amount of fluorescence they contain.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is a highly aggressive form of brain cancer associated with a very poor prognosis. Recently, the initiation and growth of GBM has been linked to brain tumor-initiating cells (BTICs), which are poorly differentiated and share features with neural stem cells (NSCs). Here we describe a kinome-wide RNA interference screen to identify factors that control the tumorigenicity of BTICs.
View Article and Find Full Text PDFBackground: The mitotic spindle is a complex mechanical apparatus required for accurate segregation of sister chromosomes during mitosis. We designed a genetic screen using automated microscopy to discover factors essential for mitotic progression. Using a RNA interference library of 49,164 double-stranded RNAs targeting 23,835 human genes, we performed a loss of function screen to look for small interfering RNAs that arrest cells in metaphase.
View Article and Find Full Text PDFAs cells enter mitosis, centrosomes dramatically increase in size and ability to nucleate microtubules. This process, termed centrosome maturation, is driven by the accumulation and activation of gamma-tubulin and other proteins that form the pericentriolar material on centrosomes during G2/prophase. Here, we show that the human centrosomal protein, Cep192 (centrosomal protein of 192 kDa), is an essential component of the maturation machinery.
View Article and Find Full Text PDFIkappaB kinase 2 (IKK2 or IKKbeta) is a component of the IKK complex that coordinates the cellular response to a diverse set of extracellular stimuli, including cytokines, microbial infection, and stress. In response to an external stimulus, the complex is activated, resulting in the phosphorylation and subsequent proteasome-mediated degradation of IkappaB proteins. This event triggers the nuclear import of the NF-kappaB transcription factor, which activates the transcription of genes that regulate a variety of fundamental biological processes, including immune response, cell survival, and development.
View Article and Find Full Text PDFRecent advances in functional genomics have enabled genome-wide genetic studies in mammalian cells. These include the establishment of high-throughput transfection and viral propagation methodologies, the production of large-scale cDNA and siRNA libraries, and the development of sensitive assay detection processes and instrumentation. The latter has been significantly facilitated by the implementation of automated microscopy and quantitative image analysis, collectively referred to as high-content screening (HCS), toward cell-based functional genomics application.
View Article and Find Full Text PDF