Publications by authors named "Daniel R Marous"

Complex carbapenems are important clinical antibiotics used to treat recalcitrant infections. Their biosynthetic gene clusters contain three essential B-dependent radical -adenosylmethionine (rSAM) enzymes. The majority of characterized enzymes in this subfamily catalyze methyl transfer, but only one is required to sequentially install all methionine-derived carbons in complex carbapenems.

View Article and Find Full Text PDF
Article Synopsis
  • * Advances in methodology have enabled researchers to gain detailed insights into the functional, mechanistic, and structural aspects of cobalamin-dependent radical SAM enzymes.
  • * Initially known for their methylation capabilities, recent findings suggest that the functions of these enzymes are more varied and will continue to be explored and understood in the future.
View Article and Find Full Text PDF

Complex carbapenem β-lactam antibiotics contain diverse C6 alkyl substituents constructed by cobalamin-dependent radical SAM enzymes. TokK installs the C6 isopropyl chain found in asparenomycin. Time-course analyses of TokK and its ortholog ThnK, which forms the C6 ethyl chain of thienamycin, indicate that catalysis occurs through a sequence of discrete, non-processive methyl transfers.

View Article and Find Full Text PDF

Tumor cell invasion is one result of the bidirectional interactions occurring between tumor cells and the surrounding milieu. The ability of tumor cells to invade through the extracellular matrix is in part regulated by the formation of a class of protease-loaded extracellular vesicles, called tumor microvesicles (TMVs), which are released directly from the cell surface. Here we show that the actin bundling protein, fascin, redistributes to the cell periphery in a ternary complex with podocalyxin and ezrin, where it promotes TMV release.

View Article and Find Full Text PDF

Lytic transglycosylases (LTs) are bacterial enzymes that catalyze the cleavage of the glycan strands of the bacterial cell wall. The mechanism of this cleavage is a remarkable intramolecular transacetalization reaction, accomplished by an ensemble of active-site residues. Because the LT reaction occurs in parallel with the cell wall bond-forming reactions catalyzed by the penicillin-binding proteins, simultaneous inhibition of both enzymes can be particularly bactericidal to Gram-negative bacteria.

View Article and Find Full Text PDF

Lytic transglycosylases (LTs) catalyze the non-hydrolytic cleavage of the bacterial cell wall by an intramolecular transacetalization reaction. This reaction is critically and broadly important in modifications of the bacterial cell wall in the course of its biosynthesis, recycling, manifestation of virulence, insertion of structural entities such as the flagellum and the pili, among others. The first QM/MM analysis of the mechanism of reaction of an LT, that for the Escherichia coli MltE, is undertaken.

View Article and Find Full Text PDF
Article Synopsis
  • Draft whole-genome sequences were created for two bacterial strains known to produce bulgecins and NRPS-derived monobactam β-lactam antibiotics, with ATCC 31363 identified as Paraburkholderia acidophila.
  • ATCC 31433 is confirmed as a distinct producer of bulgecins, showing genetic similarities to Paraburkholderia acidophila.
  • Analysis using RAST and MASH identified unique gene regions and 48 natural-product gene clusters, highlighting 10 genes likely responsible for bulgecin A biosynthesis.
View Article and Find Full Text PDF

The lytic transglycosylases (LTs) are bacterial enzymes that catalyze the non-hydrolytic cleavage of the peptidoglycan structures of the bacterial cell wall. They are not catalysts of glycan synthesis as might be surmised from their name. Notwithstanding the seemingly mundane reaction catalyzed by the LTs, their lytic reactions serve bacteria for a series of astonishingly diverse purposes.

View Article and Find Full Text PDF

Despite their broad anti-infective utility, the biosynthesis of the paradigm carbapenem antibiotic, thienamycin, remains largely unknown. Apart from the first two steps shared with a simple carbapenem, the pathway sharply diverges to the more structurally complex members of this class of β-lactam antibiotics, such as thienamycin. Existing evidence points to three putative cobalamin-dependent radical S-adenosylmethionine (RS) enzymes, ThnK, ThnL, and ThnP, as potentially being responsible for assembly of the ethyl side chain at C6, bridgehead epimerization at C5, installation of the C2-thioether side chain, and C2/3 desaturation.

View Article and Find Full Text PDF

A phenomenological mixture model is presented for interactions between biosynthesis of extracellular matrix (ECM) constituents and ECM linking in a scaffold seeded with chondrocytes. A system of three ordinary differential equations for average apparent densities of unlinked ECM, linked ECM and scaffold is developed along with associated initial conditions for scaffold material properties. Equations for unlinked ECM synthesis and ECM linking include an inhibitory mechanism where associated rates decrease as unlinked ECM concentration in the interstitial fluid increases.

View Article and Find Full Text PDF