Animals within social groups respond to costs and benefits of sociality by adjusting the proportion of time they spend in close proximity to other individuals in the group (cohesion). Variation in cohesion between individuals, in turn, shapes important group-level processes such as subgroup formation and fission-fusion dynamics. Although critical to animal sociality, a comprehensive understanding of the factors influencing cohesion remains a gap in our knowledge of cooperative behavior in animals.
View Article and Find Full Text PDFAlthough sampling the five tallest young aspen in a stand is useful for detecting the occurrence of any aspen recruitment, this technique overestimates the population response of aspen to wolf reintroduction. Our original conclusion that random sampling described a trophic cascade that was weaker than the one described by non-random sampling is unchanged.
View Article and Find Full Text PDFAlthough it is well established that density dependence drives changes in organismal abundance over time, relatively little is known about how density dependence affects variation in abundance over space. We tested the hypothesis that spatial trade-offs between food and safety can change the drivers of population distribution, caused by opposing patterns of density-dependent habitat selection (DDHS) that are predicted by the multidimensional ideal free distribution. We addressed this using winter aerial survey data of northern Yellowstone elk (Cervus canadensis) spanning four decades.
View Article and Find Full Text PDFWe know much about pathogen evolution and the emergence of new disease strains, but less about host resistance and how it is signaled to other individuals and subsequently maintained. The cline in frequency of black-coated wolves () across North America is hypothesized to result from a relationship with canine distemper virus (CDV) outbreaks. We tested this hypothesis using cross-sectional data from wolf populations across North America that vary in the prevalence of CDV and the allele that makes coats black, longitudinal data from Yellowstone National Park, and modeling.
View Article and Find Full Text PDFPredators may create healthier prey populations by selectively removing diseased individuals. Predators typically prefer some ages of prey over others, which may, or may not, align with those prey ages that are most likely to be diseased. The interaction of age-specific infection and predation has not been previously explored and likely has sizable effects on disease dynamics.
View Article and Find Full Text PDFUnderstanding trophic cascades in terrestrial wildlife communities is a major challenge because these systems are difficult to sample properly. We show how a tradition of non-random sampling has confounded this understanding in a textbook system (Yellowstone National Park) where carnivore [Canis lupus (wolf)] recovery is associated with a trophic cascade involving changes in herbivore [Cervus canadensis (elk)] behaviour and density that promote plant regeneration. Long-term data indicate a practice of sampling only the tallest young plants overestimated regeneration of overstory aspen (Populus tremuloides) by a factor of 4-7 compared to random sampling because it favoured plants taller than the preferred browsing height of elk and overlooked non-regenerating aspen stands.
View Article and Find Full Text PDFThe presence of many pathogens varies in a predictable manner with latitude, with infections decreasing from the equator towards the poles. We investigated the geographic trends of pathogens infecting a widely distributed carnivore: the gray wolf (Canis lupus). Specifically, we investigated which variables best explain and predict geographic trends in seroprevalence across North American wolf populations and the implications of the underlying mechanisms.
View Article and Find Full Text PDFEnvironmentally mediated changes in body size often underlie population responses to environmental change, yet this is not a universal phenomenon. Understanding when phenotypic change underlies population responses to environmental change is important for obtaining insights and robust predictions of population dynamics in a changing world. We develop a dynamic integral projection model that mechanistically links environmental conditions to demographic rates and phenotypic traits (body size) via changes in resource availability and individual energetics.
View Article and Find Full Text PDFMany ecosystems contain sympatric predator species that hunt in different places and times. We tested whether this provides vacant hunting domains, places and times where and when predators are least active, that prey use to minimize threats from multiple predators simultaneously. We measured how northern Yellowstone elk (Cervus elaphus) responded to wolves (Canis lupus) and cougars (Puma concolor), and found that elk selected for areas outside the high-risk domains of both predators consistent with the vacant domain hypothesis.
View Article and Find Full Text PDFThe extent to which prey space use actively minimizes predation risk continues to ignite controversy. Methodological reasons that have hindered consensus include inconsistent measurements of predation risk, biased spatiotemporal scales at which responses are measured and lack of robust null expectations. We addressed all three challenges in a comprehensive analysis of the spatiotemporal responses of adult female elk (Cervus elaphus) to the risk of predation by wolves (Canis lupus) during winter in northern Yellowstone, USA.
View Article and Find Full Text PDFSexually selected weapons evolved to maximize the individual reproductive success of males in many polygynous breeding species. Many weapons are also retained outside of reproductive periods for secondary reasons, but the importance of these secondary functions is poorly understood. Here we leveraged a unique opportunity from the predator-prey system in northern Yellowstone National Park, WY, USA to evaluate whether predation by a widespread, coursing predator (wolves) has influenced a specific weapon trait (antler retention time) in their primary cervid prey (elk).
View Article and Find Full Text PDFTrophic interactions are a fundamental topic in ecology, but we know little about how competition between apex predators affects predation, the mechanism driving top-down forcing in ecosystems. We used long-term datasets from Scandinavia (Europe) and Yellowstone National Park (North America) to evaluate how grey wolf () kill rate was affected by a sympatric apex predator, the brown bear (). We used kill interval (i.
View Article and Find Full Text PDFAggression directed at conspecific groups is common among gregarious, territorial species, and for some species such as gray wolves (Canis lupus) intraspecific strife is the leading cause of natural mortality. Each individual in a group likely has different measures of the costs and benefits associated with a group task, such as an aggressive attack on another group, which can alter motivation and behavior. We observed 292 inter-pack aggressive interactions in Yellowstone National Park between 1 April 1995 and 1 April 2011 (>5300days of observation) in order to determine the role of both sexes, and the influence of pack, age, and other traits on aggression.
View Article and Find Full Text PDFAn intriguing aspect of social foraging behaviour is that large groups are often no better at capturing prey than are small groups, a pattern that has been attributed to diminished cooperation (i.e., free riding) in large groups.
View Article and Find Full Text PDFUnderstanding the population dynamics of top-predators is essential to assess their impact on ecosystems and to guide their management. Key to this understanding is identifying the mechanisms regulating vital rates. Determining the influence of density on survival is necessary to understand the extent to which human-caused mortality is compensatory or additive.
View Article and Find Full Text PDFReproduction in social organisms is shaped by numerous morphological, behavioural and life-history traits such as body size, cooperative breeding and age of reproduction, respectively. Little is known, however, about the relative influence of these different types of traits on reproduction, particularly in the context of environmental conditions that determine their adaptive value. Here, we use 14 years of data from a long-term study of wolves (Canis lupus) in Yellowstone National Park, USA, to evaluate the relative effects of different traits and ecological factors on the reproductive performance (litter size and survival) of breeding females.
View Article and Find Full Text PDFEnvironmental change has been observed to generate simultaneous responses in population dynamics, life history, gene frequencies, and morphology in a number of species. But how common are such eco-evolutionary responses to environmental change likely to be? Are they inevitable, or do they require a specific type of change? Can we accurately predict eco-evolutionary responses? We address these questions using theory and data from the study of Yellowstone wolves. We show that environmental change is expected to generate eco-evolutionary change, that changes in the average environment will affect wolves to a greater extent than changes in how variable it is, and that accurate prediction of the consequences of environmental change will probably prove elusive.
View Article and Find Full Text PDFIt is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake.
View Article and Find Full Text PDF1. Large body size hinders locomotor performance in ways that may lead to trade-offs in predator foraging ability that limit the net predatory benefit of larger size. For example, size-related improvements in handling prey may come at the expense of pursuing prey and thus negate any enhancement in overall predatory performance due to increasing size.
View Article and Find Full Text PDFBecause some native ungulates have lived without top predators for generations, it has been uncertain whether runaway predation would occur when predators are newly restored to these systems. We show that landscape features and vegetation, which influence predator detection and capture of prey, shape large-scale patterns of predation in a newly restored predator-prey system. We analysed the spatial distribution of wolf (Canis lupus) predation on elk (Cervus elaphus) on the Northern Range of Yellowstone National Park over 10 consecutive winters.
View Article and Find Full Text PDF