Publications by authors named "Daniel R Kattnig"

The radical pair mechanism accounts for the magnetic field sensitivity of a large class of chemical reactions and is hypothesised to underpin numerous magnetosensitive traits in biology, including the avian compass. Traditionally, magnetic field sensitivity in this mechanism is attributed to radical pairs with weakly interacting, well-separated electrons; closely bound pairs were considered unresponsive to weak fields due to arrested spin dynamics. In this study, we challenge this view by examining the FAD-superoxide radical pair within cryptochrome, a protein hypothesised to function as a biological magnetosensor.

View Article and Find Full Text PDF

This study explores the impact of thermal motion on the magnetic compass mechanism in migratory birds, focusing on the radical pair mechanism within cryptochrome photoreceptors. The coherence of radical pairs, crucial for magnetic field inference, is curbed by spin relaxation induced by intra-protein motion. Molecular dynamics simulations, density-functional-theory-based calculations, and spin dynamics calculations were employed, utilizing Bloch-Redfield-Wangsness (BRW) relaxation theory, to investigate compass sensitivity.

View Article and Find Full Text PDF

Cryptochrome is currently the major contender of a protein to underpin magnetoreception, the ability to sense the Earth's magnetic field. Among various types of cryptochromes, cryptochrome 4 has been identified as the likely magnetoreceptor in migratory birds. All-atom molecular dynamics (MD) studies have offered first insights into the structural dynamics of cryptochrome but are limited to a short time scale due to large computational demands.

View Article and Find Full Text PDF

Flavin-binding cryptochromes are blue-light sensitive photoreceptors that have been implicated with magnetoreception in some species. The photocycle involves an intra-protein photo-reduction of the flavin cofactor, generating a magnetosensitive radical pair, and its subsequent re-oxidation. Superoxide (O) is generated in the re-oxidation with molecular oxygen.

View Article and Find Full Text PDF

Migratory songbirds have the remarkable ability to extract directional information from the Earth's magnetic field. The exact mechanism of this light-dependent magnetic compass sense, however, is not fully understood. The most promising hypothesis focuses on the quantum spin dynamics of transient radical pairs formed in cryptochrome proteins in the retina.

View Article and Find Full Text PDF

Spin relaxation is an important aspect of the spin dynamics of free radicals and can have a significant impact on the outcome of their spin-selective reactions. Examples range from the use of radicals as spin qubits in quantum information processing to the radical pair reactions in proteins that may allow migratory birds to sense the direction of the Earth's magnetic field. Accurate modeling of spin relaxation, however, is non-trivial.

View Article and Find Full Text PDF

The Posner molecule (calcium phosphate trimer, Ca(PO)) has been hypothesized to function as a biological quantum information processor due to its supposedly long-lived entangled P nuclear spin states. This hypothesis was challenged by our recent finding that the molecule lacks a well-defined rotational axis of symmetry─an essential assumption in the proposal for Posner-mediated neural processing─and exists as an asymmetric dynamical ensemble. Following up, we investigate here the spin dynamics of the molecule's entangled P nuclear spins within the asymmetric ensemble.

View Article and Find Full Text PDF

This report summarizes effects of anthropogenic electric, magnetic, and electromagnetic fields in the frequency range from 0 to 100 MHz on flora and fauna, as presented at an international workshop held on 5-7 November in 2019 in Munich, Germany. Such fields may originate from overhead powerlines, earth or sea cables, and from wireless charging systems. Animals and plants react differentially to anthropogenic fields; the mechanisms underlying these responses are still researched actively.

View Article and Find Full Text PDF

This report summarizes the effects of anthropogenic radiofrequency electromagnetic fields with frequencies above 100 MHz on flora and fauna presented at an international workshop held on 5-7 November 2019 in Munich, Germany. Anthropogenic radiofrequency electromagnetic fields at these frequencies are commonplace; e.g.

View Article and Find Full Text PDF

The magnetic compass of migratory birds is thought to rely on a radical pair reaction inside the blue-light photoreceptor protein cryptochrome. The sensitivity of such a sensor to weak external magnetic fields is determined by a variety of magnetic interactions, including electron-nuclear hyperfine interactions. Here, we investigate the implications of thermal motion, focusing on fluctuations in the dihedral and librational angles of flavin adenine dinucleotide (FAD) and tryptophan (Trp) radicals in cryptochrome 4a from European robin (, ErCry4a) and pigeon (, ClCry4a) and cryptochrome 1 from the plant (AtCry1).

View Article and Find Full Text PDF

The mechanism underlying magnetoreception has long eluded explanation. A popular hypothesis attributes this sense to the quantum coherent spin dynamics and spin-selective recombination reactions of radical pairs in the protein cryptochrome. However, concerns about the validity of the hypothesis have been raised because unavoidable inter-radical interactions, such as the strong electron-electron dipolar coupling, appear to suppress its sensitivity.

View Article and Find Full Text PDF

Adult hippocampal neurogenesis and hippocampus-dependent cognition in mice have been found to be adversely affected by hypomagnetic field exposure. The effect concurred with a reduction of reactive oxygen species in the absence of the geomagnetic field. A recent theoretical study suggests a mechanistic interpretation of this phenomenon in the framework of the Radical Pair Mechanism.

View Article and Find Full Text PDF

The radicals derived from flavin adenine dinucleotide (FAD) are a corner stone of recent hypotheses about magnetoreception, including the compass of migratory songbirds. These models attribute a magnetic sense to coherent spin dynamics in radical pairs within the flavo-protein cryptochrome. The primary determinant of sensitivity and directionality of this process are the hyperfine interactions of the involved radicals.

View Article and Find Full Text PDF

It is hypothesised that the avian compass relies on spin dynamics in a recombining radical pair. Quantum coherence has been suggested as a resource to this process that nature may utilise to achieve increased compass sensitivity. To date, the true functional role of coherence in these natural systems has remained speculative, lacking insights from sufficiently complex models.

View Article and Find Full Text PDF

We report high-pressure (up to 50 MPa) ESR-spectroscopic investigations on the rotational correlation times of the nitroxide radicals 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), and 4-amino-2,2,6,6-tetramethylpiperidine 1-oxyl (ATEMPO) in the ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate (emimBF), 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF), 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF), 1-methyl-3-octylimidazolium tetrafluoroborate (omimBF), and 1-methyl-3-octylimidazolium hexafluorophosphate (omimPF). The activation volumes (38.5-56.

View Article and Find Full Text PDF

The avian compass and many other of nature's magnetoreceptive traits are widely ascribed to the protein cryptochrome. There, magnetosensitivity is thought to emerge as the spin dynamics of radicals in the applied magnetic field enters in competition with their recombination. The first and dominant model makes use of a radical pair.

View Article and Find Full Text PDF

Many birds are endowed with a visual magnetic sense that may exploit magnetosensitive radical recombination processes in the protein cryptochrome. In this widely accepted but unproven model, geomagnetic sensitivity is suggested to arise from variations in the recombination rate of a pair of radicals, whose unpaired electron spins undergo coherent singlet-triplet interconversion in the geomagnetic field by coupling to nuclear spins via hyperfine interactions. However, simulations of this conventional radical pair mechanism (RPM) predicted only tiny magnetosensitivities for realistic conditions because the RPM's directional sensitivity is strongly suppressed by the intrinsic electron-electron dipolar (EED) interactions, casting doubt on its viability as a magnetic sensor.

View Article and Find Full Text PDF

The Posner molecule, Ca(PO), has long been recognized to have biochemical relevance in various physiological processes. It has found recent attention for its possible role as a biological quantum information processor, whereby the molecule purportedly maintains long-lived nuclear spin coherences among its P nuclei (presumed to be symmetrically arranged), allowing it to function as a room temperature qubit. The structure of the molecule has been of much dispute in the literature, although the point group symmetry has often been assumed and exploited in calculations.

View Article and Find Full Text PDF

A widespread hypothesis ascribes the ability of migratory birds to navigate over large distances to an inclination compass realized by the protein cryptochrome in the birds' retinae. Cryptochromes are activated by blue light, which induces a radical pair state, the spin dynamics of which may become sensitive to earth's weak magnetic fields. The magnetic information is encoded and passed on to downstream processes by structural rearrangements of the protein, the details of which remain vague.

View Article and Find Full Text PDF

We provide a theoretical analysis of spin-selective recombination processes in clusters of n ≥ 3 radicals. Specifically, we discuss how spin correlation can ensue from random encounters of n radicals, i.e.

View Article and Find Full Text PDF

In systems of more than two reactive radicals, the radical recombination probability can be magnetosensitive due to the mere effect of the inter-radical electron-electron dipolar coupling. Here, we demonstrate that this principle, previously established for three-radical systems, generalizes to n-radical systems. We focus on radical systems in the plane and explore the effects of symmetry, in particular its absence, on the associated magnetic field effects of the recombination yield.

View Article and Find Full Text PDF

The mechanism of the magnetic compass sense of migratory songbirds is thought to involve magnetically sensitive chemical reactions of light-induced radical pairs in cryptochrome proteins located in the birds' eyes. However, it is not yet clear whether this mechanism would be sensitive enough to form the basis of a viable compass. In the present work, we report spin dynamics simulations of models of cryptochrome-based radical pairs to assess whether accumulation of nuclear spin polarization in multiple photocycles could lead to significant enhancements in the sensitivity with which the proteins respond to the direction of the geomagnetic field.

View Article and Find Full Text PDF

A visual magnetic sense in migratory birds has been hypothesized to rely on a radical pair reaction in the protein cryptochrome. In this model, magnetic sensitivity originates from coherent spin dynamics, as the radicals couple to magnetic nuclei hyperfine interactions. Prior studies have often neglected the electron-electron dipolar (EED) coupling from this hypothesis.

View Article and Find Full Text PDF

We present a theoretical analysis of the putative magnetosensitivity of lipid peroxidation. We focus on the widely accepted radical pair mechanism (RPM) and a recently suggested idea based on spin dynamics induced in three-radical systems by the mutual electron-electron dipolar coupling (D3M). We show that, contrary to claims in the literature, lipid peroxides, the dominant chain carriers of the autoxidation process, have associated non-zero hyperfine coupling interactions.

View Article and Find Full Text PDF