Genotoxicity testing is an essential component of the safety assessment paradigm required by regulatory agencies world-wide for analysis of drug candidates, and environmental and industrial chemicals. Current genotoxicity testing batteries feature a high incidence of irrelevant positive findings-particularly for chromosomal damage (CD) assays. The risk management of compounds with positive findings is a major challenge and requires complex, time consuming, and costly follow-up strategies including animal testing.
View Article and Find Full Text PDFInterpretation of positive genotoxicity findings using the current in vitro testing battery is a major challenge to industry and regulatory agencies. These tests, especially mammalian cell assays, have high sensitivity but suffer from low specificity, leading to high rates of irrelevant positive findings (i.e.
View Article and Find Full Text PDFGenotoxicity testing is a critical component of chemical assessment. The use of integrated approaches in genetic toxicology, including the incorporation of gene expression data to determine the DNA damage response pathways involved in response, is becoming more common. In companion papers previously published in Environmental and Molecular Mutagenesis, Li et al.
View Article and Find Full Text PDFThe development of in vitro molecular biomarkers to accurately predict toxicological effects has become a priority to advance testing strategies for human health risk assessment. The application of in vitro transcriptomic biomarkers promises increased throughput as well as a reduction in animal use. However, the existing protocols for predictive transcriptional signatures do not establish appropriate guidelines for dose selection or account for the fact that toxic agents may have pleiotropic effects.
View Article and Find Full Text PDFThe use of integrated approaches in genetic toxicology, including the incorporation of gene expression data to determine the molecular pathways involved in the response, is becoming more common. In a companion article, a genomic biomarker was developed in human TK6 cells to classify chemicals as genotoxic or nongenotoxic. Because TK6 cells are not metabolically competent, we set out to broaden the utility of the biomarker for use with chemicals requiring metabolic activation.
View Article and Find Full Text PDFToxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures.
View Article and Find Full Text PDFAltered metabolism in cancer cells has been viewed as a passive response required for a malignant transformation. However, this view has changed through the recently described metabolic oncogenic factors: mutated isocitrate dehydrogenases (IDH), succinate dehydrogenase (SDH), and fumarate hydratase (FH) that produce oncometabolites that competitively inhibit epigenetic regulation. In this study, we demonstrate in silico predictions of oncometabolites that have the potential to dysregulate epigenetic controls in nine types of cancer by incorporating massive scale genetic mutation information (collected from more than 1,700 cancer genomes), expression profiling data, and deploying Recon 2 to reconstruct context-specific genome-scale metabolic models.
View Article and Find Full Text PDFGrowth is a fundamental process of life. Growth requirements are well-characterized experimentally for many microbes; however, we lack a unified model for cellular growth. Such a model must be predictive of events at the molecular scale and capable of explaining the high-level behavior of the cell as a whole.
View Article and Find Full Text PDFMotivation: Genome-scale metabolic models have been used extensively to investigate alterations in cellular metabolism. The accuracy of these models to represent cellular metabolism in specific conditions has been improved by constraining the model with omics data sources. However, few practical methods for integrating metabolomics data with other omics data sources into genome-scale models of metabolism have been developed.
View Article and Find Full Text PDFBackground: COnstraint-Based Reconstruction and Analysis (COBRA) methods are widely used for genome-scale modeling of metabolic networks in both prokaryotes and eukaryotes. Due to the successes with metabolism, there is an increasing effort to apply COBRA methods to reconstruct and analyze integrated models of cellular processes. The COBRA Toolbox for MATLAB is a leading software package for genome-scale analysis of metabolism; however, it was not designed to elegantly capture the complexity inherent in integrated biological networks and lacks an integration framework for the multiomics data used in systems biology.
View Article and Find Full Text PDFInt J Bioinform Res Appl
March 2014
Ionising radiation is a pleiotropic stress agent that may induce a variety of adverse effects. Molecular biomarker approaches possess promise to assess radiation exposure, however, the pleiotropic nature of ionising radiation induced transcriptional responses and the historically poor inter-laboratory performance of omics-derived biomarkers serve as barriers to identification of unequivocal biomarker sets. Here, we present a whole-genome survey of the murine transcriptomic response to physiologically relevant radiation doses, 2 Gy and 8 Gy.
View Article and Find Full Text PDFSalmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes to virulence in S.
View Article and Find Full Text PDFOver the past decade a massive amount of research has been dedicated to generating omics data to gain insight into a variety of biological phenomena, including cancer, obesity, biofuel production, and infection. Although most of these omics data are available publicly, there is a growing concern that much of these data sit in databases without being used or fully analyzed. Statistical inference methods have been widely applied to gain insight into which genes may influence the activities of others in a given omics data set, however, they do not provide information on the underlying mechanisms or whether the interactions are direct or distal.
View Article and Find Full Text PDFBackground: Breast tissue is among the most sensitive tissues to the carcinogenic actions of ionizing radiation and epidemiological studies have linked radiation exposure to breast cancer. Currently, molecular understanding of radiation carcinogenesis in mammary gland is hindered due to the scarcity of in vivo long-term follow up data. We undertook this study to delineate radiation-induced persistent alterations in gene expression in mouse mammary glands 2-month after radiation exposure.
View Article and Find Full Text PDFTranscription and translation use raw materials and energy generated metabolically to create the macromolecular machinery responsible for all cellular functions, including metabolism. A biochemically accurate model of molecular biology and metabolism will facilitate comprehensive and quantitative computations of an organism's molecular constitution as a function of genetic and environmental parameters. Here we formulate a model of metabolism and macromolecular expression.
View Article and Find Full Text PDFMacrophages are central players in immune response, manifesting divergent phenotypes to control inflammation and innate immunity through release of cytokines and other signaling factors. Recently, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features that are critical for macrophage activation.
View Article and Find Full Text PDFMetabolomics on easily accessible biofluids has the potential to provide rapid identification and distinction between stressors and inflammatory states. In the event of a radiological event, individuals with underlying medical conditions could present with similar symptoms to radiation poisoning, prominently nausea, diarrhea, vomiting and fever. Metabolomics of radiation exposure in mice has provided valuable biomarkers, and in this study we aimed to identify biomarkers of lipopolysaccharide (LPS) exposure to compare and contrast with ionizing radiation.
View Article and Find Full Text PDFBackground: Yersinia pestis is a gram-negative bacterium that causes plague, a disease linked historically to the Black Death in Europe during the Middle Ages and to several outbreaks during the modern era. Metabolism in Y. pestis displays remarkable flexibility and robustness, allowing the bacterium to proliferate in both warm-blooded mammalian hosts and cold-blooded insect vectors such as fleas.
View Article and Find Full Text PDFOver the past decade, a growing community of researchers has emerged around the use of constraint-based reconstruction and analysis (COBRA) methods to simulate, analyze and predict a variety of metabolic phenotypes using genome-scale models. The COBRA Toolbox, a MATLAB package for implementing COBRA methods, was presented earlier. Here we present a substantial update of this in silico toolbox.
View Article and Find Full Text PDFSalmonella is a primary cause of enteric diseases in a variety of animals. During its evolution into a pathogenic bacterium, Salmonella acquired an elaborate regulatory network that responds to multiple environmental stimuli within host animals and integrates them resulting in fine regulation of the virulence program. The coordinated action by this regulatory network involves numerous virulence regulators, necessitating genome-wide profiling analysis to assess and combine efforts from multiple regulons.
View Article and Find Full Text PDFBackground: Metabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium is a human pathogen, causes various diseases and its increasing antibiotic resistance poses a public health problem.
Results: Here, we describe a community-driven effort, in which more than 20 experts in S.
BMC Bioinformatics
October 2010
Background: Network Component Analysis (NCA) has been used to deduce the activities of transcription factors (TFs) from gene expression data and the TF-gene binding relationship. However, the TF-gene interaction varies in different environmental conditions and tissues, but such information is rarely available and cannot be predicted simply by motif analysis. Thus, it is beneficial to identify key TF-gene interactions under the experimental condition based on transcriptome data.
View Article and Find Full Text PDFBiological signalling networks allow living organisms to issue an integrated response to current conditions and make limited predictions about future environmental changes. Small-scale dynamic models of signalling cascades, including mitogen-activated protein kinase cascades, have been developed to generate hypotheses about signal transduction. Owing to technical limitations, these models and the hypotheses they generate have focused on a limited subset of signalling molecules.
View Article and Find Full Text PDFThe molecular mechanisms underlying the development and progression of prostate cancer are poorly understood. AMP-activated protein kinase (AMPK) is a serine-threonine kinase that is activated in response to the hypoxic conditions found in human prostate cancers. In response to energy depletion, AMPK activation promotes metabolic changes to maintain cell proliferation and survival.
View Article and Find Full Text PDFDuring infection or denitrification, bacteria encounter reactive nitrogen species. Although the molecular targets of and defensive response against nitric oxide (NO) in Escherichia coli are well studied, the response elements specific to S-nitrosothiols are less clear. Previously, we employed an integrated systems biology approach to unravel the E.
View Article and Find Full Text PDF