The last two decades have witnessed an explosion in research focused on the development and assessment of novel biomarkers for improved prognosis of diseases. As a result, best practice standards guiding biomarker research have undergone extensive development. Currently, there is great interest in the promise of biomarkers to enhance research efforts and clinical practice in the setting of chronic kidney disease, acute kidney injury, and glomerular disease.
View Article and Find Full Text PDFConventionally, biobanks supporting clinical research studies have preserved serum, plasma, urine, saliva, a variety of tissue types, and stool. With the emergence of increasingly sophisticated technologies for analyzing single cells, there is growing interest in preserving viable blood cells for future functional studies. The new All of Us Research Program (formerly the Precision Medicine Initiative Cohort Program) biobank plans to house samples from a million or more individuals as part of a cohort with rich phenotypic data and longitudinal follow-up ( www.
View Article and Find Full Text PDF(Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury.
View Article and Find Full Text PDFWe introduce a label-free method to rapidly phenotype and classify cells purely based on physical properties. We extract 15 biophysical parameters from cells as they deform in a microfluidic stretching flow field via high-speed microscopy and apply machine-learning approaches to discriminate different cell types and states. When employing the full 15 dimensional dataset, the technique robustly classifies individual cells based on their pluripotency, with accuracy above 95%.
View Article and Find Full Text PDFExosomes, nanosized membrane-bound vesicles released by cells, play roles in cell signaling, immunology, virology, and oncology. Their study, however, has been hampered by difficulty in isolation and quantification due to their size and the complexity of biological samples. Conventional approaches to improved isolation require specialized equipment and extensive sample preparation time.
View Article and Find Full Text PDFPrecise spatiotemporal control of how particles and cells interact with reagents is critical for numerous laboratory and industrial processes. Novel tools for exerting this control at shorter time scales will enable development of new chemical processes and biomedical assays. Previously, we have developed a generalized approach to manipulate cells and particles across fluid streams termed rapid inertial solution exchange (RInSE), which utilizes inertial lift forces at finite Reynolds number and high Peclet number to transfer particles from an initial solution to another within a millisecond.
View Article and Find Full Text PDFBiophysical characteristics of cells are attractive as potential diagnostic markers for cancer. Transformation of cell state or phenotype and the accompanying epigenetic, nuclear, and cytoplasmic modifications lead to measureable changes in cellular architecture. We recently introduced a technique called deformability cytometry (DC) that enables rapid mechanophenotyping of single cells in suspension at rates of 1000 cells/s-a throughput that is comparable to traditional flow cytometry.
View Article and Find Full Text PDFCells suspended in bodily fluids are routinely analyzed by cytopathologists as a means of diagnosing malignancies and other diseases. The physical and morphological properties of these suspended cells are evaluated in making diagnostic decisions, which often requires manual concentration, staining, and washing procedures to extract information about intracellular architecture. The need to manually prepare slides for analysis by a cytopathologist is a labor-intensive process, which is ripe for additional automation to reduce costs but also to potentially provide more repeatable and improved accuracy in diagnoses.
View Article and Find Full Text PDFA blood-based, low cost alternative to radiation intensive CT and PET imaging is critically needed for cancer prognosis and management of its treatment. "Liquid biopsies" of circulating tumor cells (CTCs) from a relatively non-invasive blood draw are particularly ideal, as they can be repeated regularly to provide up to date molecular information about the cancer, which would also open up key opportunities for personalized therapies. Beyond solely diagnostic applications, CTCs are also a subject of interest for drug development and cancer research.
View Article and Find Full Text PDFReorganization of cytoskeletal networks, condensation and decondensation of chromatin, and other whole cell structural changes often accompany changes in cell state and can reflect underlying disease processes. As such, the observable mechanical properties, or mechanophenotype, which is closely linked to intracellular architecture, can be a useful label-free biomarker of disease. In order to make use of this biomarker, a tool to measure cell mechanical properties should accurately characterize clinical specimens that consist of heterogeneous cell populations or contain small diseased subpopulations.
View Article and Find Full Text PDFA novel inertial focusing platform creates a single-stream microparticle train in a single-focal plane without sheath fluids and external forces, all in a high-throughput manner. The proposed design consists of a low-aspect-ratio straight channel interspersed with a series of constrictions in height arranged orthogonally, making use of inertial focusing and geometry-induced secondary flows. Focusing efficiency as high as 99.
View Article and Find Full Text PDFA general strategy for controlling particle movement across streams would enable new capabilities in single-cell analysis, solid-phase reaction control, and biophysics research. Transferring cells across streams is difficult to achieve in a well-controlled manner, since it requires precise control of fluid flow along with external force fields or precisely manufactured mechanical structures. Herein a strategy is introduced for particle transfer based on passive inertial lift forces and shifts in the distribution of these forces for channels with shifting aspect ratios.
View Article and Find Full Text PDFOptical microscopy is one of the most widely used diagnostic methods in scientific, industrial, and biomedical applications. However, while useful for detailed examination of a small number (< 10,000) of microscopic entities, conventional optical microscopy is incapable of statistically relevant screening of large populations (> 100,000,000) with high precision due to its low throughput and limited digital memory size. We present an automated flow-through single-particle optical microscope that overcomes this limitation by performing sensitive blur-free image acquisition and nonstop real-time image-recording and classification of microparticles during high-speed flow.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2012
Cell state is often assayed through measurement of biochemical and biophysical markers. Although biochemical markers have been widely used, intrinsic biophysical markers, such as the ability to mechanically deform under a load, are advantageous in that they do not require costly labeling or sample preparation. However, current techniques that assay cell mechanical properties have had limited adoption in clinical and cell biology research applications.
View Article and Find Full Text PDFPowerful methods in molecular biology are abundant; however, in many fields including hematology, stem cell biology, tissue engineering, and cancer biology, data from tools and assays that analyze the average signals from many cells may not yield the desired result because the cells of interest may be in the minority-their behavior masked by the majority-or because the dynamics of the populations of interest are offset in time. Accurate characterization of samples with high cellular heterogeneity may only be achieved by analyzing single cells. In this chapter, we discuss the rationale for performing analyses on individual cells in more depth, cover the fields of study in which single-cell behavior is yielding new insights into biological and clinical questions, and speculate on how single-cell analysis will be critical in the future.
View Article and Find Full Text PDFHigh-speed high-contrast imaging modalities that enable image acquisition of transparent media without the need for chemical staining are essential tools for a broad range of applications; from semiconductor process monitoring to blood screening. Here we introduce a method for contrast-enhanced imaging of unstained transparent objects that is capable of high-throughput imaging. This method combines the Nomarski phase contrast capability with the ultrahigh frame rate and shutter speed of serial time-encoded amplified microscopy.
View Article and Find Full Text PDFRecent advances in imaging technology for biomedicine, including high-speed microscopy, automated microscopy, and imaging flow cytometry are poised to have a large impact on clinical diagnostics, drug discovery, and biological research. Enhanced acquisition speed, resolution, and automation of sample handling are enabling researchers to probe biological phenomena at an increasing rate and achieve intuitive image-based results. However, the rich image sets produced by these tools are massive, possessing potentially millions of frames with tremendous depth and complexity.
View Article and Find Full Text PDFHeterogeneity within the human population and within diseased tissues necessitates a personalized medicine approach to diagnostics and the treatment of diseases. Functional assays at the single-cell level can contribute to uncovering heterogeneity and ultimately assist in improved treatment decisions based on the presence of outlier cells. We aim to develop a platform for high-throughput, single-cell-based assays using well-characterized hydrodynamic cell isolation arrays which allow for precise cell and fluid handling.
View Article and Find Full Text PDFCell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations.
View Article and Find Full Text PDFParticles in finite-inertia confined channel flows are known to segregate and focus to equilibrium positions whose number corresponds with the fold of symmetry of the channel's cross section. The addition of curvature into channels presumably modifies these equilibrium inertial focusing positions, because of the secondary flow induced in curved channels. Here, we identify the critical interaction of the secondary flow field with inertial lift forces to create complex sets of particle focusing positions that vary with the channel Reynolds number (Re(C)) and the inertial force ratio, which is a new dimensionless parameter that is based on the ratio of inertial lift to drag forces from the secondary flow.
View Article and Find Full Text PDF