Beilstein J Nanotechnol
January 2023
Atomic force microscopy (AFM) is highly regarded as a lens peering into the next discoveries of nanotechnology. Fundamental research in atomic interactions, molecular reactions, and biological cell behaviour are key focal points, demanding a continuous increase in resolution and sensitivity. While renowned fields such as optomechanics have marched towards outstanding signal-to-noise ratios, these improvements have yet to find a practical way to AFM.
View Article and Find Full Text PDFIn this work, we investigate the change of contact angle (CA) of a water droplet during evaporation on a Teflon AF1600 surface in the temperature range between 20 and 80 °C under standard laboratory conditions. An almost constant initial CA and a significant increase of the stabilized CA have been observed. The results reveal a temperature-dependent CA change, mainly due to water adsorption on the solid surface.
View Article and Find Full Text PDFFerroelectric materials exhibit a phase transition to a paraelectric state driven by temperature - called the Curie transition. In conventional ferroelectrics, the Curie transition is caused by a change in crystal symmetry, while the material itself remains a continuous three-dimensional solid crystal. However, ferroelectric polymers behave differently.
View Article and Find Full Text PDFUnderstanding the interaction between nanoparticles and the matrix and the properties of interphase is crucial to predict the macroscopic properties of a nanocomposite system. Here, we investigate the interaction between boehmite nanoparticles (BNPs) and epoxy using different atomic force microscopy (AFM) approaches. We demonstrate benefits of using multifrequency intermodulation AFM (ImAFM) to obtain information about conservative, dissipative and van der Waals tip-surface forces and probing local properties of nanoparticles, matrix and the interphase.
View Article and Find Full Text PDFWe study the interaction between an AFM tip and a soft viscoelastic surface. Using a multifrequency method we measure the amplitude-dependence of the cantilever dynamic force quadratures, which clearly show the effect of finite relaxation time of the viscoelastic surface. A model is introduced which treats the tip and surface as a two-body dynamic problem with a nonlinear interaction depending on their separation.
View Article and Find Full Text PDFBeilstein J Nanotechnol
July 2013
We present polynomial force reconstruction from experimental intermodulation atomic force microscopy (ImAFM) data. We study the tip-surface force during a slow surface approach and compare the results with amplitude-dependence force spectroscopy (ADFS). Based on polynomial force reconstruction we generate high-resolution surface-property maps of polymer blend samples.
View Article and Find Full Text PDFBeilstein J Nanotechnol
February 2013
Intermodulation atomic force microscopy (ImAFM) is a mode of dynamic atomic force microscopy that probes the nonlinear tip-surface force by measurement of the mixing of multiple modes in a frequency comb. A high-quality factor cantilever resonance and a suitable drive comb will result in tip motion described by a narrow-band frequency comb. We show, by a separation of time scales, that such motion is equivalent to rapid oscillations at the cantilever resonance with a slow amplitude and phase or frequency modulation.
View Article and Find Full Text PDFKnowledge of surface forces is the key to understanding a large number of processes in fields ranging from physics to material science and biology. The most common method to study surfaces is dynamic atomic force microscopy (AFM). Dynamic AFM has been enormously successful in imaging surface topography, even to atomic resolution, but the force between the AFM tip and the surface remains unknown during imaging.
View Article and Find Full Text PDFVarious methods of force measurement with the atomic force microscope are compared for their ability to accurately determine the tip-surface force from analysis of the nonlinear cantilever motion. It is explained how intermodulation, or the frequency mixing of multiple drive tones by the nonlinear tip-surface force, can be used to concentrate the nonlinear motion in a narrow band of frequency near the cantilever's fundamental resonance, where accuracy and sensitivity of force measurement are greatest. Two different methods for reconstructing tip-surface forces from intermodulation spectra are explained.
View Article and Find Full Text PDFNonlinear systems can be probed by driving them with two or more pure tones while measuring the intermodulation products of the drive tones in the response. We describe a digital lockin analyzer which is designed explicitly for this purpose. The analyzer is implemented on a field-programmable gate array, providing speed in analysis, real-time feedback, and stability in operation.
View Article and Find Full Text PDFWe describe a method of analysis which allows for reconstructing the nonlinear disturbance of a high Q harmonic oscillator. When the oscillator is driven with two or more frequencies, the nonlinearity causes intermodulation of the drives, resulting in a complicated spectral response. Analysis of this spectrum allows one to approximate the nonlinearity.
View Article and Find Full Text PDFIntermodulation atomic force microscopy (IMAFM) is a dynamic mode of atomic force microscopy (AFM) with two-tone excitation. The oscillating AFM cantilever in close proximity to a surface experiences the nonlinear tip-sample force which mixes the drive tones and generates new frequency components in the cantilever response known as intermodulation products (IMPs). We present a procedure for extracting the phase at each IMP and demonstrate phase images made by recording this phase while scanning.
View Article and Find Full Text PDF